Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prickly protein

07.02.2014
Production of an exceptionally large surface protein prevents bacteria from forming clumps and reduces their ability to cause disease

A genetic mechanism that controls the production of a large spike-like protein on the surface of Staphylococcus aureus (staph) bacteria alters the ability of the bacteria to form clumps and to cause disease, according to a new University of Iowa study.


Images taken with a scanning electron microscope show wild-type bacteria (left) forming tight aggregates or clumps in the presence of blood proteins. In contrast, cells of the mutant strain (right) over produce a giant surface protein, have a spiky appearance, and do not clump tightly together. This clumping defect makes the mutant strain less deadly in an experimental model of the serious staph infection, endocarditis.

Credit: Alexander Horswill, University of Iowa

The new study is the first to link this genetic mechanism to the production of the giant surface protein and to clumping behavior in bacteria. It is also the first time that clumping behavior has been associated with endocarditis, a serious infection of heart valves that kills 20,000 Americans each year. The findings were published in the Dec. 2103 issue of the journal PLOS Pathogens.

Under normal conditions, staph bacteria interact with proteins in human blood to form aggregates, or clumps. This clumping behavior has been associated with pathogenesis -- the ability of bacteria to cause disease. However, the mechanisms that control clumping are not well understood.

In the process of investigating how staph bacteria regulate cell-to-cell interactions, researchers at the UI Carver College of Medicine discovered a mutant strain of staph that does not clump at all in the presence of blood proteins.

Further investigation revealed that the clumping defect is due to disruption of a genetic signaling mechanism used by bacteria to sense and respond to their environment. The study shows that when the mechanism is disrupted, the giant surface protein is overproduced -- giving the cells a spiny, or "porcupine-like" appearance -- and the bacteria lose their ability to form clumps.

Importantly, the researchers led by Alexander Horswill, PhD, associate professor of microbiology, found that this clumping defect also makes the bacteria less dangerous in an experimental model of the serious staph infection, endocarditis.

Specifically, the team showed that wild type bacteria cause much larger vegetations (aggregates of bacteria) on the heart valves and are more deadly than the mutant bacteria, which are unable to form clumps. The experimental model of the disease was a good parallel to the team's test tube experiments.

"The mutant bacteria that don't clump in test tube experiments, don't form vegetations on the heart valves," Horswill explains.

The team then created a version of the mutant bacteria that was also unable to make the giant surface protein. This strain regained the ability of form clumps and also partially regained its ability to cause disease, suggesting that the surface protein is at least partly responsible for both preventing clump formation and for reducing pathogenesis.

"Our study suggests that clumping could be a target for therapy," says Horswill. "If we could find drugs that block clumping, I think they would be potentially really useful for blocking staph infections."

Staph bacteria are the most significant cause of serious infectious disease in the United States, according to the Centers for Disease Control and Prevention (CDC). The bacteria are responsible for life-threatening conditions, including endocarditis, pneumonia, toxic shock, and sepsis. A better understanding of how staph bacteria causes disease may help improve treatment.

The team is now using screening methods to find small molecules that can block clumping. Such molecules will allow the researchers to investigate the clumping mechanism more thoroughly and may also point to therapies that might reduce the illness caused by staph infections.

The research was partially supported by grant funding from the National Institutes of Health (AI083211 and AI157153).

In addition to Horswill, the research team included Jeffrey Boyd, PhD, a former post doctoral researcher at the UI, whose early work initiated the study, and Patrick Schlievert, PhD, UI professor and chair of microbiology. UI scientists Jennifer Walker, Heidi Crosby, Adam Spaulding, Wilmara Salgado-Pabon, Cheryl Malone, and Carolyn Rosenthal were also part of the research team.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: Prickly blood protein genetic mechanism heart valves test tube

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>