Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prickly protein

07.02.2014
Production of an exceptionally large surface protein prevents bacteria from forming clumps and reduces their ability to cause disease

A genetic mechanism that controls the production of a large spike-like protein on the surface of Staphylococcus aureus (staph) bacteria alters the ability of the bacteria to form clumps and to cause disease, according to a new University of Iowa study.


Images taken with a scanning electron microscope show wild-type bacteria (left) forming tight aggregates or clumps in the presence of blood proteins. In contrast, cells of the mutant strain (right) over produce a giant surface protein, have a spiky appearance, and do not clump tightly together. This clumping defect makes the mutant strain less deadly in an experimental model of the serious staph infection, endocarditis.

Credit: Alexander Horswill, University of Iowa

The new study is the first to link this genetic mechanism to the production of the giant surface protein and to clumping behavior in bacteria. It is also the first time that clumping behavior has been associated with endocarditis, a serious infection of heart valves that kills 20,000 Americans each year. The findings were published in the Dec. 2103 issue of the journal PLOS Pathogens.

Under normal conditions, staph bacteria interact with proteins in human blood to form aggregates, or clumps. This clumping behavior has been associated with pathogenesis -- the ability of bacteria to cause disease. However, the mechanisms that control clumping are not well understood.

In the process of investigating how staph bacteria regulate cell-to-cell interactions, researchers at the UI Carver College of Medicine discovered a mutant strain of staph that does not clump at all in the presence of blood proteins.

Further investigation revealed that the clumping defect is due to disruption of a genetic signaling mechanism used by bacteria to sense and respond to their environment. The study shows that when the mechanism is disrupted, the giant surface protein is overproduced -- giving the cells a spiny, or "porcupine-like" appearance -- and the bacteria lose their ability to form clumps.

Importantly, the researchers led by Alexander Horswill, PhD, associate professor of microbiology, found that this clumping defect also makes the bacteria less dangerous in an experimental model of the serious staph infection, endocarditis.

Specifically, the team showed that wild type bacteria cause much larger vegetations (aggregates of bacteria) on the heart valves and are more deadly than the mutant bacteria, which are unable to form clumps. The experimental model of the disease was a good parallel to the team's test tube experiments.

"The mutant bacteria that don't clump in test tube experiments, don't form vegetations on the heart valves," Horswill explains.

The team then created a version of the mutant bacteria that was also unable to make the giant surface protein. This strain regained the ability of form clumps and also partially regained its ability to cause disease, suggesting that the surface protein is at least partly responsible for both preventing clump formation and for reducing pathogenesis.

"Our study suggests that clumping could be a target for therapy," says Horswill. "If we could find drugs that block clumping, I think they would be potentially really useful for blocking staph infections."

Staph bacteria are the most significant cause of serious infectious disease in the United States, according to the Centers for Disease Control and Prevention (CDC). The bacteria are responsible for life-threatening conditions, including endocarditis, pneumonia, toxic shock, and sepsis. A better understanding of how staph bacteria causes disease may help improve treatment.

The team is now using screening methods to find small molecules that can block clumping. Such molecules will allow the researchers to investigate the clumping mechanism more thoroughly and may also point to therapies that might reduce the illness caused by staph infections.

The research was partially supported by grant funding from the National Institutes of Health (AI083211 and AI157153).

In addition to Horswill, the research team included Jeffrey Boyd, PhD, a former post doctoral researcher at the UI, whose early work initiated the study, and Patrick Schlievert, PhD, UI professor and chair of microbiology. UI scientists Jennifer Walker, Heidi Crosby, Adam Spaulding, Wilmara Salgado-Pabon, Cheryl Malone, and Carolyn Rosenthal were also part of the research team.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: Prickly blood protein genetic mechanism heart valves test tube

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>