Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prickly protein

07.02.2014
Production of an exceptionally large surface protein prevents bacteria from forming clumps and reduces their ability to cause disease

A genetic mechanism that controls the production of a large spike-like protein on the surface of Staphylococcus aureus (staph) bacteria alters the ability of the bacteria to form clumps and to cause disease, according to a new University of Iowa study.


Images taken with a scanning electron microscope show wild-type bacteria (left) forming tight aggregates or clumps in the presence of blood proteins. In contrast, cells of the mutant strain (right) over produce a giant surface protein, have a spiky appearance, and do not clump tightly together. This clumping defect makes the mutant strain less deadly in an experimental model of the serious staph infection, endocarditis.

Credit: Alexander Horswill, University of Iowa

The new study is the first to link this genetic mechanism to the production of the giant surface protein and to clumping behavior in bacteria. It is also the first time that clumping behavior has been associated with endocarditis, a serious infection of heart valves that kills 20,000 Americans each year. The findings were published in the Dec. 2103 issue of the journal PLOS Pathogens.

Under normal conditions, staph bacteria interact with proteins in human blood to form aggregates, or clumps. This clumping behavior has been associated with pathogenesis -- the ability of bacteria to cause disease. However, the mechanisms that control clumping are not well understood.

In the process of investigating how staph bacteria regulate cell-to-cell interactions, researchers at the UI Carver College of Medicine discovered a mutant strain of staph that does not clump at all in the presence of blood proteins.

Further investigation revealed that the clumping defect is due to disruption of a genetic signaling mechanism used by bacteria to sense and respond to their environment. The study shows that when the mechanism is disrupted, the giant surface protein is overproduced -- giving the cells a spiny, or "porcupine-like" appearance -- and the bacteria lose their ability to form clumps.

Importantly, the researchers led by Alexander Horswill, PhD, associate professor of microbiology, found that this clumping defect also makes the bacteria less dangerous in an experimental model of the serious staph infection, endocarditis.

Specifically, the team showed that wild type bacteria cause much larger vegetations (aggregates of bacteria) on the heart valves and are more deadly than the mutant bacteria, which are unable to form clumps. The experimental model of the disease was a good parallel to the team's test tube experiments.

"The mutant bacteria that don't clump in test tube experiments, don't form vegetations on the heart valves," Horswill explains.

The team then created a version of the mutant bacteria that was also unable to make the giant surface protein. This strain regained the ability of form clumps and also partially regained its ability to cause disease, suggesting that the surface protein is at least partly responsible for both preventing clump formation and for reducing pathogenesis.

"Our study suggests that clumping could be a target for therapy," says Horswill. "If we could find drugs that block clumping, I think they would be potentially really useful for blocking staph infections."

Staph bacteria are the most significant cause of serious infectious disease in the United States, according to the Centers for Disease Control and Prevention (CDC). The bacteria are responsible for life-threatening conditions, including endocarditis, pneumonia, toxic shock, and sepsis. A better understanding of how staph bacteria causes disease may help improve treatment.

The team is now using screening methods to find small molecules that can block clumping. Such molecules will allow the researchers to investigate the clumping mechanism more thoroughly and may also point to therapies that might reduce the illness caused by staph infections.

The research was partially supported by grant funding from the National Institutes of Health (AI083211 and AI157153).

In addition to Horswill, the research team included Jeffrey Boyd, PhD, a former post doctoral researcher at the UI, whose early work initiated the study, and Patrick Schlievert, PhD, UI professor and chair of microbiology. UI scientists Jennifer Walker, Heidi Crosby, Adam Spaulding, Wilmara Salgado-Pabon, Cheryl Malone, and Carolyn Rosenthal were also part of the research team.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: Prickly blood protein genetic mechanism heart valves test tube

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>