Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Previously unconnected molecular networks conspire to promote cancer

23.12.2011
Inflammatory signaling blocks NUMB’s ability to deaden NOTCH1-driven tumor development

An inflammation-promoting protein triggers deactivation of a tumor-suppressor that usually blocks cancer formation via the NOTCH signaling pathway, a team of researchers led by scientists at The University of Texas MD Anderson Cancer Center reports today in Molecular Cell.

Working in liver cancer cell lines, the team discovered a mechanism by which tumor necrosis factor alpha (TNFá) stimulates tumor formation, said senior author Mien-Chie Hung, Ph.D., professor and chair of MD Anderson's Department of Molecular and Cellular Oncology. Hung also is MD Anderson's vice president for basic research.

"We've discovered cross-talk between the TNFá inflammation and NOTCH signaling pathways, which had been known to separately promote cancer development and growth," Hung said. Liver cancer is one of several cancers, including pancreatic and breast, associated with inflammation.

Their findings have potential implications for a new class of anti-cancer drugs currently in clinical trials. "Pharmaceutical companies are developing NOTCH inhibitors," Hung said. "TNFá now presents a potential resistance mechanism that activates NOTCH signaling in a non-traditional way."

Pathways also unite in colon, lung, prostate cancers

"In addition, co-activation of these two pathways was also observed in colon, lung and prostate cancers, suggesting that the cross-talk between these two pathways may be more generally relevant," Hung said.

However, TNFá also presents an opportunity to personalize therapy, Hung said. The presence of TNFá or a separate protein that it activates called IKK alpha may serve as useful biomarkers to guide treatment.

"If a patient has only NOTCH activated, then the NOTCH inhibitor alone might work. But if TNFá or IKKá are also activated, then the NOTCH inhibitor alone might not work very well and combination therapy would be warranted," Hung said.

"We'll try this in an animal model and then go to clinical trial if it holds up," Hung said.

A path from inflammation to liver cancer

In a series of experiments, Hung and colleagues connected the following molecular cascade:

TNFá, a proinflammatory cytokine, signals through a cell's membrane, activating IKKá, a protein kinase that regulates other proteins by attaching phosphate groups (one phosphate atom, four oxygen atoms) to them.

IKKá moves into the cell nucleus, where it phosphorylatesFOXA2, a transcription factor that normally fires up the tumor suppressor NUMB.

NUMB usually blocks a protein called NICD, the activated portion of NOTCH1 that slips into the cell nucleus to activate genes that convert the normal cell to a malignant one.

But when FOXA2 is phosphorylated, it does not activate NUMB. With NUMB disabled, NOTCH1 is activated. New understanding, new targets for cancer therapy

In liver cancer (hepatocellular carcinoma) tumors, IKKá, the phosphorylated version of FOXA2 and NOTCH1 are expressed more heavily than in normal liver tissue. Expression of all three is correlated in liver cancer tumors, the team found.

The authors conclude that identifying the link between TNFá and NOTCH1 pathways provides a new starting point for understanding the molecular basis for TNFá-related tumor growth and for identifying new targets for cancer therapy.

Finding ways to inhibit FOXA2 phosphorylation or to activate NUMB would provide new options for treating and perhaps preventing cancer, Hung said.

Co-authors with Hung are first author Mo Liu, Dung-Fang Lee, Chun-Te Chen, Hong-Jen Lee, Chun-Ju Chang, Jung-Mao Hsu, Hsu-Ping Kuo, Weiya Xia, Yongkun Wei, Chao-Kai Chou, and Yi Du, all of MD Anderson's Department of Molecular and Cellular Oncology; Liu also is a graduate student in The University of Texas Graduate School of Biomedical Sciences at Houston, a joint program of MD Anderson and The University of Texas Health Science Center at Houston; Chia-Jui Yen, National Cheng Kung University College of Medicine, Tainan, Taiwan; Long-Yuan Li, Wei-Chao Chang and Pei-Chun Chiu of the Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Debanjan Dhar and Michael Karin, Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego; and Chung-Hsuan Chen, The Genomics Research Center, Academica Sinica, Taipei, Taiwan. Wei-Chao Chang also is associated with Academic Sinica.

Funding for this research was provided by the National Cancer Institute, including MD Anderson's Cancer Center Support Grant from the NCI, National Science Council of Taiwan, Taiwan Department of Health; The MD Anderson-China Medical University and Hospital Sister Institution Fund, the Kadoorie Charitable Foundation and a research assistant scholarship to Mo Liu by the University of Texas Graduate School of Biomedical Sciences at Houston.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>