Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Previously unconnected molecular networks conspire to promote cancer

23.12.2011
Inflammatory signaling blocks NUMB’s ability to deaden NOTCH1-driven tumor development

An inflammation-promoting protein triggers deactivation of a tumor-suppressor that usually blocks cancer formation via the NOTCH signaling pathway, a team of researchers led by scientists at The University of Texas MD Anderson Cancer Center reports today in Molecular Cell.

Working in liver cancer cell lines, the team discovered a mechanism by which tumor necrosis factor alpha (TNFá) stimulates tumor formation, said senior author Mien-Chie Hung, Ph.D., professor and chair of MD Anderson's Department of Molecular and Cellular Oncology. Hung also is MD Anderson's vice president for basic research.

"We've discovered cross-talk between the TNFá inflammation and NOTCH signaling pathways, which had been known to separately promote cancer development and growth," Hung said. Liver cancer is one of several cancers, including pancreatic and breast, associated with inflammation.

Their findings have potential implications for a new class of anti-cancer drugs currently in clinical trials. "Pharmaceutical companies are developing NOTCH inhibitors," Hung said. "TNFá now presents a potential resistance mechanism that activates NOTCH signaling in a non-traditional way."

Pathways also unite in colon, lung, prostate cancers

"In addition, co-activation of these two pathways was also observed in colon, lung and prostate cancers, suggesting that the cross-talk between these two pathways may be more generally relevant," Hung said.

However, TNFá also presents an opportunity to personalize therapy, Hung said. The presence of TNFá or a separate protein that it activates called IKK alpha may serve as useful biomarkers to guide treatment.

"If a patient has only NOTCH activated, then the NOTCH inhibitor alone might work. But if TNFá or IKKá are also activated, then the NOTCH inhibitor alone might not work very well and combination therapy would be warranted," Hung said.

"We'll try this in an animal model and then go to clinical trial if it holds up," Hung said.

A path from inflammation to liver cancer

In a series of experiments, Hung and colleagues connected the following molecular cascade:

TNFá, a proinflammatory cytokine, signals through a cell's membrane, activating IKKá, a protein kinase that regulates other proteins by attaching phosphate groups (one phosphate atom, four oxygen atoms) to them.

IKKá moves into the cell nucleus, where it phosphorylatesFOXA2, a transcription factor that normally fires up the tumor suppressor NUMB.

NUMB usually blocks a protein called NICD, the activated portion of NOTCH1 that slips into the cell nucleus to activate genes that convert the normal cell to a malignant one.

But when FOXA2 is phosphorylated, it does not activate NUMB. With NUMB disabled, NOTCH1 is activated. New understanding, new targets for cancer therapy

In liver cancer (hepatocellular carcinoma) tumors, IKKá, the phosphorylated version of FOXA2 and NOTCH1 are expressed more heavily than in normal liver tissue. Expression of all three is correlated in liver cancer tumors, the team found.

The authors conclude that identifying the link between TNFá and NOTCH1 pathways provides a new starting point for understanding the molecular basis for TNFá-related tumor growth and for identifying new targets for cancer therapy.

Finding ways to inhibit FOXA2 phosphorylation or to activate NUMB would provide new options for treating and perhaps preventing cancer, Hung said.

Co-authors with Hung are first author Mo Liu, Dung-Fang Lee, Chun-Te Chen, Hong-Jen Lee, Chun-Ju Chang, Jung-Mao Hsu, Hsu-Ping Kuo, Weiya Xia, Yongkun Wei, Chao-Kai Chou, and Yi Du, all of MD Anderson's Department of Molecular and Cellular Oncology; Liu also is a graduate student in The University of Texas Graduate School of Biomedical Sciences at Houston, a joint program of MD Anderson and The University of Texas Health Science Center at Houston; Chia-Jui Yen, National Cheng Kung University College of Medicine, Tainan, Taiwan; Long-Yuan Li, Wei-Chao Chang and Pei-Chun Chiu of the Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Debanjan Dhar and Michael Karin, Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego; and Chung-Hsuan Chen, The Genomics Research Center, Academica Sinica, Taipei, Taiwan. Wei-Chao Chang also is associated with Academic Sinica.

Funding for this research was provided by the National Cancer Institute, including MD Anderson's Cancer Center Support Grant from the NCI, National Science Council of Taiwan, Taiwan Department of Health; The MD Anderson-China Medical University and Hospital Sister Institution Fund, the Kadoorie Charitable Foundation and a research assistant scholarship to Mo Liu by the University of Texas Graduate School of Biomedical Sciences at Houston.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>