Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preplay of future place cell sequences by hippocampal cellular assemblies

10.01.2011
Researchers at MIT's Picower Institute for Learning and Memory report for the first time how animals' knowledge obtained through past experiences can subconsciously influence their behavior in new situations.

Researchers at MIT's Picower Institute for Learning and Memory report for the first time how animals' knowledge obtained through past experiences can subconsciously influence their behavior in new situations.

The work, which sheds light on how our past experiences inform our future choices, was reported on Dec. 22 in an advance online publication of Nature.

Previous work has shown that when a rat or mouse explores a new space, neurons in its hippocampus, the center of learning and memory, fire sequentially like gunpowder igniting a makeshift fuse. Individual neurons called place cells fire in a specific pattern that mirrors the animal's movement through space. By looking at the time-specific patterns and sequences recorded from the firing cells, researchers can tell which part of the maze the animal was running at the time.

In the current work, research scientist George Dragoi and Susumu Tonegawa, Picower Professor of Biology and Neuroscience and director of the RIKEN-MIT Center for Neural Circuit Genetics, found that some of the sequences of place cells in mice' brains that fired during a novel spatial experience such as running a new maze had already occurred while the animals rested before the experience.

"These findings explain at the neuronal circuit level the phenomenon through which prior knowledge influences our decisions when we encounter a new situation," Dragoi said. "This explains in part why different individuals form different representations and respond differently when faced with the same situation."

Thinking ahead

When a mouse pauses and rests while running a maze, it mentally replays its experience. Its neurons fire in the same pattern of activity that occurred while it was running. Unlike this version of mental replay, the phenomenon found by the MIT researchers is called preplay. It occurred before the animal even started the new maze.

"These results suggest that internal neuronal dynamics during resting organize cells within the hippocampus into time-based sequences that help encode a related experience occurring in the future," Tonegawa said.

"Previous work largely ignored internal neuronal activities representing prior knowledge that occurred before a new event, space or situation. Our work shows that an individual's access to prior knowledge can help predict a response to a new but similar experience," he said.

This work is supported by supported by the National Institutes of Health.

By Deborah Halber

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht How cells hack their own genes
24.08.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>