Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New prenatal genetic test is much more powerful at detecting fetal abnormalities

10.02.2012
While both tests look for the same thing, chromosomal microarray finds more, says New York-Presbyterian/Columbia researcher who led nationwide study

A nationwide, federally funded study has found that testing a developing fetus' DNA through chromosomal microarray (CMA) provides more information about potential disorders than does the standard method of prenatal testing, which is to visually examine the chromosomes (karyotyping).

The results of the 4,000-plus-participant clinical study are being presented at the 32nd annual meeting of the Society for Maternal-Fetal Medicine in Dallas on Feb. 9, 2012. The study was recently published in the American Journal of Obstetrics & Gynecology.

In women having routine prenatal diagnosis, CMA detected additional genetic abnormalities in about 1 out of every 70 fetal samples that had a normal karyotype. When a birth defect was imaged by ultrasound, CMA found additional important genetic information in 6 percent of cases. These results suggest that CMA may soon replace karyotyping for prenatal testing, says Dr. Ronald Wapner, director of Reproductive Genetics at NewYork-Presbyterian Hospital/Columbia University Medical Center and vice chairman for research and professor of obstetrics and gynecology at Columbia University College of Physicians and Surgeons.

"Why would anyone want to continue to use the standard method, which gives only part of the answer?" says Dr. Wapner, who led the 34-center study funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development. "However, we will have to carefully transition this information into clinical practice — to educate physicians and patients, develop guidelines for its use, and learn how to best use it to improve care."

CMA is not routinely used for prenatal testing but has become the primary genetic test to evaluate newborns with birth defects, as well as infants and young children with developmental delays.

Dr. Wapner describes the observed difference in accuracy between the two tests this way: "With karyotyping, we can see only when pieces of the genome of about 5 million base pairs are missing from a chromosome. With CMA, we can see missing pieces of fewer than 100,000 base pairs."

CMA is based on a method that determines whether the right amount of genetic material is present at numerous locations in the fetus' genome.

This study was the first to examine the two methods in a blinded head-to-head comparison. Fetal samples were collected from the amniotic fluid or placenta of 4,450 participants. "These were women who were seeking prenatal testing for the usual reasons, which could be age, increased risk of inheritable disease, or a structural abnormality in the fetus," Dr. Wapner says.

Each participant's sample was split and sent, in a blinded fashion, to one of four laboratories that perform CMA — NewYork-Presbyterian Hospital/Columbia University Medical Center, Emory University, Baylor College of Medicine or Signature Genetics. The other portion of the sample was sent to Genzyme Genetics for standard karyotyping.

Results show that CMA and karyotyping were equally effective at identifying chromosomal abnormalities such as the duplicate chromosomes that cause Down syndrome and Trisomy 18. But CMA provided significantly more clinically relevant information in two situations.

"In 6 percent of the cases where there's a structural abnormality of the fetus but karyotyping is normal, CMA will provide additional significant information," Dr. Wapner says. "And in about 1.7 percent of cases where the procedure was done because of the mother's age or similar concerns and the chromosomes were normal, CMA reveals additional information of concern."

Both tests offer information on conditions that can be life-threatening to a newborn baby or that can signal a possible health threat that might be treatable. "We are looking for the same thing in both tests," Dr. Wapner says. "But we find more abnormalities with CMA."

CMA can identify at least 150 known conditions and tell us exactly what the problem is and what it means for a child. Although karyotyping provides the same kind of information, CMA will likely provide more information on other potential disorders that might not otherwise be picked up such as intellectual disability or autism.

"It does not always mean that a child will necessarily develop these disorders, because many are due to multiple influences," Dr. Wapner says. "But it will help parents because they can be on the lookout for a particular disorder and have a treatment plan in place. I believe it is important to give parents as much information as they need about their child."

Agilent and Affymetrix provided microarrays for this study.

Dr. Wapner declares no financial or other conflict of interest.

NewYork-Presbyterian Hospital/Columbia University Medical Center

NewYork-Presbyterian Hospital/Columbia University Medical Center, located in New York City, is one of the leading academic medical centers in the world, comprising the teaching hospital NewYork-Presbyterian and its academic partner, Columbia University College of Physicians and Surgeons. NewYork-Presbyterian/Columbia provides state-of-the-art inpatient, ambulatory and preventive care in all areas of medicine, and is committed to excellence in patient care, research, education and community service. NewYork-Presbyterian Hospital also comprises NewYork-Presbyterian Hospital/Weill Cornell Medical Center, NewYork-Presbyterian/Morgan Stanley Children's Hospital, NewYork-Presbyterian Hospital/Westchester Division and NewYork-Presbyterian/The Allen Hospital. NewYork-Presbyterian is the #1 hospital in the New York metropolitan area and is consistently ranked among the best academic medical institutions in the nation, according to U.S.News & World Report. For more information, visit http://www.nyp.org.
Columbia University Medical Center

Columbia University Medical Center provides international leadership in basic, pre-clinical, and clinical research; in medical and health sciences education; and in patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Established in 1767, Columbia's College of Physicians and Surgeons was the first institution in the country to grant the M.D. degree and is among the most selective medical schools in the country. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest in the United States. For more information, please visit http://www.cumc.columbia.edu.

Gloria Chin | EurekAlert!
Further information:
http://www.nyp.org
http://www.cumc.columbia.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>