Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Premature birth and brain damage - inflammation may play a role

06.04.2010
Researchers have gone some way to explaining what happens during premature births and how brain injury develops in premature babies. New findings show that inflammation in both the amniotic fluid and the baby's brain has a role to play, reveals a thesis from the Sahlgrenska Academy.

One of the reasons for premature birth could be inflammation in the amniotic fluid or the placenta caused by bacteria. The infection triggers labour far earlier than expected.

The study saw researchers looking at various factors linked to inflammation, known as markers, in the amniotic fluid of 83 women whose waters broke early or who went into labour prematurely, and of 15 women who had elective caesareans at full term.

"We found that the galectin-3 marker was much higher in women who were threatening preterm delivery and who had signs of infection in their amniotic fluid or placenta," says Christina Doverhag, a postgraduate student at the Department of Physiology at the Sahlgrenska Academy. "This hasn't been measured in the amniotic fluid before."

The researchers also wanted to investigate the role of free radicals in brain injury in children who were born prematurely or who suffered a lack of oxygen during birth. Free radicals damage the body's cells and are formed during inflammation, among other things.

"We studied two inflammation markers - galectin-3 and the enzyme NADPH-oxidase - in newborn mice. Our animal studies showed that galectin-3 can exacerbate brain injury, particularly in newborn males. In our other animal study we removed the NADPH-oxidase enzyme, and this led to greater injury and inflammation in some of the mice," says Doverhag, who draws the conclusion that both inflammation and galectin-3 play a significant role in brain damage in newborn children.

This means that some medicines under development for the treatment of stroke and brain injury in adults, and which work in part by blocking the release of free radicals and NADPH-oxidase, are unlikely to be suitable for newborns with the same symptoms. They could, in fact, result in further injury.

"On the other hand, there is a common substance that can block galectin-3 and which is about to undergo further testing in the hunt for a treatment for brain injury in newborns," says Doverhag. "That substance is lactose, also known as milk sugar."

However, further research is needed before concrete treatments become available.
"We need to know more about the content of the amniotic fluid and how it affects premature birth, and about how the sex of the unborn baby affects the amniotic fluid," says Doverhag.
PREMATURE BABIES
Babies born before the 37th week of pregnancy are classified as premature. Between five and six per cent of babies born each year fall into this category. There are many reasons for premature birth, including maternal illness and early breaking of the waters. Children who are born prematurely are more likely to suffer with illnesses or complications as their organs have not yet matured.

The thesis has been successfully defended.

For more information, please contact:
Christina Doverhag, postgraduate student at the Perinatal Center at the Institute of Neuroscience and Physiology, tel: +46 31 786 3393, mobile: +46 73 201 2625, e-mail: Christina.doverhag@fysiologi.gu.se
Doctoral thesis for the degree of PhD (Medicine) at the Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy

Title of thesis: Inflammation in experimental neonatal brain injury and in a clinical study of preterm birth; Involvement of galectin-3 and free radical formation

Journal: Environmental Science and Technology.
Title of article: Therapeutic levels of levonorgestrel detected in blood plasma of fish: results from screening rainbow trout exposed to treated sewage effluents.

Authors: Jerker Fick, Richard H Lindberg, Jari Parkkonen, Björn Arvidsson, Mats Tysklind, D G Joakim Larsson

Helena Aaberg | idw
Further information:
http://www.gu.se
http://hdl.handle.net/2077/21479

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>