Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful genome barcoding system reveals large-scale variation in human DNA

01.06.2010
Genetic abnormalities are most often discussed in terms of differences so miniscule they are actually called "snips" — changes in a single unit along the 3 billion that make up the entire string of human DNA.

"There's a whole world beyond SNPs — single nucleotide polymorphisms — and we've stepped into that world," says Brian Teague, a doctoral student in genetics at the University of Wisconsin-Madison. "There are much bigger changes in there."

Variation on the order of thousands to hundreds of thousands of DNA's smallest pieces — large swaths varying in length or location or even showing up in reverse order — appeared 4,205 times in a comparison of DNA from just four people, according to a study published May 31 in the Proceedings of the National Academy of Sciences.

Those structural differences popped into clear view through computer analysis of more than 500 linear feet of DNA molecules analyzed by the powerful genome mapping system developed over nearly two decades by David C. Schwartz, professor of chemistry and genetics at UW-Madison.

"We probably have the most comprehensive view of the human genome ever," Schwartz says. "And the variation we're seeing in the human genome is something we've known was there and important for many years, but we haven't been able to fully study it."

To get a better picture of those structural variations, Schwartz and his team developed the Optical Mapping System, a wholly new type of genome analysis that directly examines millions of individual DNA molecules.

Common systems for analyzing genomes typically chop long DNA molecules into fragments less than a couple thousand base pairs long and multiply them en masse, like a copy machine, to develop a chemical profile of each piece.

Reading such small sections without seeing their place in the larger picture of DNA leaves out critical understanding. To make matters worse, interesting parts of the human genome are often found within DNA's trickiest stretches.

"Short pieces could really come from so many different locations," Teague says. "An enormous part of the genome is composed of repeating DNA, and important differences are often associated with areas that have a lot of repeated sections."

It's a problem inherent to the method that has irked Schwartz for a long time.

"Our new technology quickly analyzes huge DNA molecules one at a time, which eliminates the copy machine step, reduces the number of DNA jig-saw pieces and increases the unique qualities of each piece," Schwartz says. "These advantages allow us to discover novel genetic patterns that are otherwise invisible."

The genome mapping system in Schwartz' lab takes in much larger pieces, at least millions of base pairs at a time. Sub-millimeter sections of single DNA molecules — thread-like and, in full, 4 to 5 inches long in humans — are coaxed onto treated glass surfaces.

The long strands of DNA straighten out on the glass, and are clipped into sections by enzymes and scanned by automated microscopes. The pattern of these cuts along each molecule thread produces a unique barcode, identifying the DNA molecule and revealing genetic changes it harbors.

The scan results are passed along to databases for storage and retrieval, and handled by software that stitches collections of bar-coded molecules together with others to reconstitute the entire strand of DNA and quickly pinpoint genetic changes.

"What we have here is a genetic version of Google Earth," Schwartz says. "I could sit down with you and start at chromosome 1, and we could pan and zoom through each one and actually see the genetic changes across an individual's genome."

To Teague, the Optical Mapping System provides access to a new frame of reference on human genetic variation.

"I've got a whole folder of papers on diseases that are ascribable to these structural differences," he says. "If you can see the genetic basis for those diseases, you can figure out the molecular differences in their development and pick drug targets to treat or cure or avoid them altogether. We fit into that storyline right up at the front."

It's been a long story.

"We've been thinking about these large structural variations for decades," says Schwartz, whose work is funded by the National Institutes for Health and the National Science Foundation. "The problem was that the system for discerning large structural variants was not available. So we had to build it."

The integrative building process included studying the behavior of fluids at microscopic scale, manipulating large DNA molecules and placing barcodes on them, automating high-powered microscopes to analyze single molecules, organizing the computing infrastructure to handle the data and algorithms to analyze whole human genome, and more.

And after notable turns analyzing the DNA of corn, parasites, bacteria and even the mold that caused the 19th-century potato famine in Ireland, Schwartz has arrived at the human genome, his original target.

"It's like you spend years making a telescope, and then one day you point it at the sky and you discover things that no one else could see," he says. "We've integrated so many scientific problems together in a holistic way, which lets us solve very hard problems."

The result is a 30-day turnaround for one graduate student to analyze one human genome, but that's just a waypoint. Schwartz's team isn't just pointing at the sky. They are aiming for the stars by building new systems for personal genomics.

"This will go even further," says Konstantinos Potamousis, the lab's instrumentation innovator and a co-author on the study, which included researchers from UW-Madison, Mississippi State University, the University of Pittsburgh, the University of Southern California and the University of Washington. "Our systems scale nicely into the future because we've pioneered single molecule technologies. The newer systems we are building will provide more genetic information in far less time."

With development complete on new molecular devices, software and analysis, a large piece of the system is already in place.

And the speed of innovation will synergize the pace of genome analysis.

"Our newer genome analysis systems, if commercialized, promise genome analysis in one hour, at under $1,000," Schwartz says. "And we require that high speed and low cost to power the new field of personal genomics."

David C. Schwartz | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>