Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New potential therapeutic target identified for Diffuse Large B-Cell Lymphoma

29.11.2011
Researchers reveal deletions and mutations of the FBXO11 gene in B-cells contribute to the development of the most common type of lymphoma

Researchers from the NYU Cancer Institute, an NCI-designated cancer center at NYU Langone Medical Center, have discovered a new potential therapeutic target for Diffuse Large B-Cell Lymphoma (DLBCL), the most aggressive and common type of lymphoma in adults. The new study, published in the November 23 issue of Nature, reveals the underlying molecular mechanism contributing to the development of lymphomagenesis.

"We have discovered that the protein FBXO11 is a novel tumor suppressor in B-cells," said senior study author Michele Pagano, MD, the May Ellen and Gerald Jay Ritter Professor of Oncology and Professor of Pathology at NYU Langone Medical Center and a Howard Hughes Medical Institute Investigator. "Our new research findings show deletion or mutation of the FBXO11 gene in B-cells may lead to the formation of Diffuse Large B-Cell Lymphoma."

Lymphoma is a blood cancer that affects the lymphatic system, the body's infection and disease-fighting network. DLBCL is the most common type of adult lymphoma. This type of non-Hodgkin lymphoma develops within B-cells, a type of lymphocytes or white blood cells in the lymphatic tissue of the body. Mutations of certain genes in the B-cells located in the lymph nodes and other organs of the immune system contribute to the proliferation of DLBCL throughout the body.

The majority of patients with DLBCL overexpress the protein B-Cell Lymphoma 6 (BCL6). By binding to specific DNA sequences, BCL6 regulates the transcription of genes that are crucial to B-cell development and function. Deregulation of BCL6 leads to the pathogenesis of B-cell lymphomas as proven in experiments in mice expressing BCL6 in B-cells and developing DLBCL similar to human disease. In certain DLBCL patients, BCL6 overexpression is achieved through gene translocation or mutation of its promoter. However, many other patients with DLBCLs overexpress BCL6 through a mechanism that has been unknown until now.

In the study, NYU Langone researchers show FBXO11 as a novel tumor suppressor. FBXO11, part of a SKP1/CUL1/F-box protein (SCF) ubiquitin ligase protein complex, controls BCL6 degradation. FBXO11 functions to keep the levels of BCL6 in B-cells low. The new study shows that BCL6 protein is targeted for degradation by the B-cell's ubiquitin system, the cell-recycling system that helps limit unnecessary cell growth and prevent malignant cell transformation. FBXO11-mediated elimination of BCL6 prevents the development of DLBCL. Additionally, researchers discovered FBXO11 is deleted or mutated in many DLBCL cell lines and DLBCL patients. Experimentally, inactivation, mutation or deletion of FBXO11 in B-cells induces overexpression of BCL6. Moreover, reconstitution of FBXO11 expression in FBXO11-deleted DLBCL cells, by promoting BCL6 degradation, inhibits proliferation and induces the death of tumor cells.

"These findings reveal the molecular mechanism behind the overexpression of BCL6 in B-cell lymphomas," said Dr. Pagano. "Mutations and deletions of FBXO11 in B-cells contribute to lymphomagenesis. As lymphoma cells are addicted to BCL6 expression, FBXO11-mediated regulation of BCL6 is a new potential therapeutic strategy for the future treatment of lymphoma."

This study was a collaboration between NYU Cancer Institute, NYU School of Medicine, Howard Hughes Medical Institute, University of Torino, San Giovanni Battista Hospital, Dana-Farber Cancer Institute. The study was supported by funding from the National Institutes of Health, Howard Hughes Medical Institute, Susan G. Komen Foundation and Lymphoma Research Foundation.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to http://www.NYULMC.org.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>