Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new heart attack biomarker uncovered

14.12.2009
Appearing in the December issue of MCP

Though they remain a leading killer, heart attacks can be effectively treated provided they can be rapidly diagnosed following initial onset of symptoms. In a study appearing in this month's Molecular and Cellular Proteomics, researchers have identified cardiac myosin-binding protein C (cMyBP-C) as a potential new diagnostic biomarker for heart attacks, one that may be particularly valuable for mild attacks in which traditional diagnostic proteins may not be abundant enough.

Currently, one of the gold-standards for diagnosis of heart attacks, or acute myocardial infarctions, is scanning for the presence of the proteins troponin I and troponin T, as they are produced specifically in the heart and are almost completely absent in the blood in healthy individuals.

However, even troponins are not ideal markers, since they are released somewhat slowly following a heart attack (peaking around 18 hours post-infarction) and remain in the blood for up to 10 days afterwards, hindering the diagnosis of any secondary heart attacks.

In the quest for better biomarkers, a group of researchers at King's College London performed a proteomic analysis of all the proteins released by mouse hearts following induced heart attacks. They identified 320 proteins not released by normal hearts, including all the currently employed biomarkers.

Only a handful of these proteins were specific to the heart, but among those, one very promising lead was cMyBP-C; within 5 minutes following a heart attack it became nearly 20 fold more abundant than before, one of the highest increases of all 320 identified proteins. In fact, cMyBP-C was abundant following even minor heart attacks, suggesting it could be very useful in such instances.

The researchers are now continuing their investigation and examining the time course of cMyBP-C release following heart attacks and its persistence in the blood of mice, to further determine this protein's potential value.

From the study: "Identification of Cardiac Myosin-binding Protein C as a Candidate Biomarker of Myocardial Infarction by Proteomics Analysis," by Sebastien Jacquet, Xiaoke Yin, Pierre Sicard, James Clark, Gajen S. Kanaganayagam, Manuel Mayr, and Michael S. Marber

Article Link: http://www.mcponline.org/cgi/content/abstract/8/12/2687

Corresponding Authors:
Manuel Mayr, the James Black Centre, King's College London, UK
Tel.: 44-20-7848-5238; E-mail: manuel.mayr@kcl.ac.uk
Michael Marber, Department of Cardiology, King's College London, UK
Tel.: 44-20-7188-1008; E-mail: mike.marber@kcl.ac.uk
The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 11,900 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific work force.

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>