Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular fungicides failing, may cause hard choices for apple growers

13.07.2011
Orchard growers have started finding that some of the most commonly used fungicides are no longer effective at controlling apple scab, according to a Purdue University study.

Janna Beckerman, an associate professor of botany and plant pathology, said that extensive, long-term use of four popular fungicides has led to resistances in apples in Indiana and Michigan, the focus of her study.

"The fungicides that are regularly used to control scab have started to fail," said Beckerman, whose findings were published in the early online version of the journal Plant Disease. "But the most disturbing thing we found is that many of the samples we tested were resistant to all four fungicides. It's kind of like multidrug resistance in antibiotics. This is full-blown resistance."

Apple scab, caused by the fungus Venturia inaequalis, is highly destructive to apples, causing brown lesions on leaves and fruit. A single lesion can reduce an apple's value by 85 percent. Over time, the scabby lesion will crack and allow insects, other fungi and bacteria inside, causing a loss of the crop.

"It can cause orchard failures," Beckerman said. "An orchard grower that has this could lose blocks of an orchard, or depending on the amount of diversity in the orchard, they could lose the entire crop."

It's thought that when organisms adapt to form resistance, that change will weaken the organism in some other way. Beckerman said the study, done with Purdue graduate student Kim Chapman and Michigan State University professor George Sundin, showed apple scab, on the contrary, is becoming resistant to fungicides with no apparent fitness penalty to itself.

"Having these multiple resistances to fungicides doesn't debilitate them in any way," Beckerman said.

Apple scab samples were treated with dodine, kresoxim-methyl, myclobutanil or thiophanate-methyl. About 12 percent of the apple scab samples tested was resistant to all four fungicides.

The only options apple growers have, Beckerman said, is to use older fungicides that are tightly regulated, require more frequent application and are more expensive.

"It's going to change how growers manage their orchards," Beckerman said. "The more susceptible apple cultivars, like McIntosh, will become more chemically intensive to manage. Growers have few options as it is, and this will limit their options even further."

Beckerman said she and her collaborators would work to develop faster tests to detect fungicide resistance in apple scab to help growers change management plans in a timely manner. The U.S. Department of Agriculture, Purdue University and the Michigan Agricultural Experiment Station funded the research.

A publication-quality photo is available at http://www.purdue.edu/uns/images/2011/beckerman-applescab.jpg

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/110712BeckermanScab.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>