Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular fungicides failing, may cause hard choices for apple growers

13.07.2011
Orchard growers have started finding that some of the most commonly used fungicides are no longer effective at controlling apple scab, according to a Purdue University study.

Janna Beckerman, an associate professor of botany and plant pathology, said that extensive, long-term use of four popular fungicides has led to resistances in apples in Indiana and Michigan, the focus of her study.

"The fungicides that are regularly used to control scab have started to fail," said Beckerman, whose findings were published in the early online version of the journal Plant Disease. "But the most disturbing thing we found is that many of the samples we tested were resistant to all four fungicides. It's kind of like multidrug resistance in antibiotics. This is full-blown resistance."

Apple scab, caused by the fungus Venturia inaequalis, is highly destructive to apples, causing brown lesions on leaves and fruit. A single lesion can reduce an apple's value by 85 percent. Over time, the scabby lesion will crack and allow insects, other fungi and bacteria inside, causing a loss of the crop.

"It can cause orchard failures," Beckerman said. "An orchard grower that has this could lose blocks of an orchard, or depending on the amount of diversity in the orchard, they could lose the entire crop."

It's thought that when organisms adapt to form resistance, that change will weaken the organism in some other way. Beckerman said the study, done with Purdue graduate student Kim Chapman and Michigan State University professor George Sundin, showed apple scab, on the contrary, is becoming resistant to fungicides with no apparent fitness penalty to itself.

"Having these multiple resistances to fungicides doesn't debilitate them in any way," Beckerman said.

Apple scab samples were treated with dodine, kresoxim-methyl, myclobutanil or thiophanate-methyl. About 12 percent of the apple scab samples tested was resistant to all four fungicides.

The only options apple growers have, Beckerman said, is to use older fungicides that are tightly regulated, require more frequent application and are more expensive.

"It's going to change how growers manage their orchards," Beckerman said. "The more susceptible apple cultivars, like McIntosh, will become more chemically intensive to manage. Growers have few options as it is, and this will limit their options even further."

Beckerman said she and her collaborators would work to develop faster tests to detect fungicide resistance in apple scab to help growers change management plans in a timely manner. The U.S. Department of Agriculture, Purdue University and the Michigan Agricultural Experiment Station funded the research.

A publication-quality photo is available at http://www.purdue.edu/uns/images/2011/beckerman-applescab.jpg

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/110712BeckermanScab.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht How cells hack their own genes
24.08.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>