Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How poor maternal diet can increase risk of diabetes – new mechanism discovered

06.01.2012
Researchers funded by the Biotechnology and Biological Sciences Research Council have shown one way in which poor nutrition in the womb can put a person at greater risk of developing type 2 diabetes and other age-related diseases in later life. This finding could lead to new ways of identifying people who are at a higher risk of developing these diseases and might open up targets for treatment.

The team, from the University of Cambridge and the Medical Research Council (MRC) Toxicology Unit at the University of Leicester, publish their findings today (Friday 6 January) in the journal Cell Death and Differentiation.

The research shows that, in both rats and humans, individuals who experience a poor diet in the womb are less able to store fats correctly in later life. Storing fats in the right areas of the body is important because otherwise they can accumulate in places like the liver and muscle where they are more likely to lead to disease.

Professor Anne Willis of the MRC Toxicology Unit at the University of Leicester explains "One of the ways that our bodies cope with a rich modern western diet is by storing excess calories in fat cells. When these cells aren't able to absorb the excess then fats get deposited in other places, like the liver, where they are much more dangerous and can lead to type 2 diabetes."

The team found that this process is controlled by a molecule called miR-483-3p. They found that miR-483-3p was produced at higher levels in individuals who had experienced a poor diet in their mother's wombs than those who were better nourished.

When pregnant rats were fed low protein diets their offspring had higher levels of miR-483-3p. This led to them developing smaller fat cells and left them less able to store fats in adulthood. These rats were less likely to get fat when fed a high calorie diet but were at a higher risk of developing diabetes. Rats are known to be a good model for studying human dietary diseases and the team also found that miR-483-3p was present in elevated levels in a group of people who were born with a low birth weight.

Dr Susan Ozanne, a British Heart Foundation Senior Fellow, who led the work at the University of Cambridge, adds "It has been known for a while that your mother's diet during pregnancy plays an important role in your adult health, but the mechanisms in the body that underlie this aren't well understood. We have shown in detail how one mechanism links poor maternal diet to diabetes and other diseases that develop as we age."

Dr Ozanne and Professor Willis and their team found that miR-483-3p works by suppressing a protein called GDF3. When they studied a group of adult humans who were born with a low birth weight, they found that GDF3 protein was present at around only thirty percent of the levels found in people born at a normal weight.

Professor Willis, Director of the MRC Toxicology Unit, adds "Improving people's diets and encouraging exercise is clearly the best way to combat the epidemic of diabetes and diet-related disease which is sweeping through our society. However some people are at particular risk of these diseases, despite not looking visibly overweight. This research will hopefully allow us to help these people to take precautionary steps to reduce their likelihood of developing type 2 diabetes."

Professor Douglas Kell, Chief Executive of BBSRC said "People are continuing to live ever longer and healthier lives thanks to improvements in nutrition and healthcare. However modern diets and lifestyles are posing new challenges to which our bodies sometimes seem poorly adapted – and this has caused unforeseen health problems.

"If we are to remain healthy throughout our lives and into old age it is vital that scientists work to understand our fundamental biology in the context of social and environmental changes. By identifying a mechanism that links maternal diet to diabetes this research has made an important contribution to the fight against a growing epidemic of metabolic diseases."

Mike Davies | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>