Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientists help identify genes causing myopia

04.06.2013
Two researchers from The Hong Kong Polytechnic University have been collaborating with the Consortium for Refractive Error and Myopia (CREAM) in a global study, which identified 24 genes leading to short-sightedness, thus paved the way for further research on the prevention and control of myopia.
Two researchers from The Hong Kong Polytechnic University (PolyU) are taking an active role in a global study which has unlocked the genetic origin of myopia. Through their collaboration with the Consortium for Refractive Error and Myopia (CREAM), 24 genes leading to short-sightedness have been identified, thus paving the way for further research on the prevention and control of myopia.

This largest international genome-wide study was based on the meta-analysis of 45,758 subjects, including 37,382 individuals of European ancestry and 8,376 from Asian countries, with the concerted efforts of 64 universities and research institutes in 13 countries. On Hong Kong side, joining the CREAM are Dr Jeremy Guggenheim, Associate Professor at PolyU's School of Optometry, and Professor Yip Shea-ping, Associate Head (Research) of PolyU's Department of Health Technology and Informatics. Both of them are also members of PolyU's Centre for Myopia Research.

PolyU researchers also noted that over the past 30 years, the number of Hong Kong children developing myopia has risen alarmingly. This year, about 80 per cent will have the condition by the time they leave school. Similarly high rates of myopia are seen in cities on the Chinese mainland, Japan, Taiwan and Singapore.

People with myopia have longer than normal eyeballs, which result in their focusing of images in front of their retinas instead of on them. It is estimated that up to 80% of Asians and 30% of Caucasians are myopic, and high myopia can lead to blindness. Environmental risk factors may have played a large part in increasing the prevalence in Asia over the past half-century, such as children spending less time doing outdoor activities due to dense urbanisation and parental pressure to do well academically.

"It is important to identify genetic factors because they could open the door to developing drugs that can hinder myopia. We now have a long list of genes to examine in details, to find out how they put children at risk," explained PolyU optometry expert Dr Guggenheim.

Instead of recruiting subjects or families with high degrees of myopia, the meta-analyses examined data of unselected subjects from health studies, which would be more representative of people around the world.

"We have found 16 new loci of genes for refractive error in people of European descent, of which 8 loci are shared with people of Chinese, Indian or Malay descent. In addition, we have confirmed a further 8 associated loci." said Professor Yip.

The consortium also identified new candidate genes involved in possible mechanisms linked to eye growth and myopia. Some of the genes may be involved in the growth of the sclera, the white outer layer of the eyeball, while other genes may be involved in determining the strength of chemical signals generated by the retina when viewing images, which may influence the onset and progression of myopia.

According to this study, people with all the genetic risk factors have a tenfold-increased risk of developing myopia.

The findings have recently been published in Nature Genetics.

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>