Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientists help identify genes causing myopia

04.06.2013
Two researchers from The Hong Kong Polytechnic University have been collaborating with the Consortium for Refractive Error and Myopia (CREAM) in a global study, which identified 24 genes leading to short-sightedness, thus paved the way for further research on the prevention and control of myopia.
Two researchers from The Hong Kong Polytechnic University (PolyU) are taking an active role in a global study which has unlocked the genetic origin of myopia. Through their collaboration with the Consortium for Refractive Error and Myopia (CREAM), 24 genes leading to short-sightedness have been identified, thus paving the way for further research on the prevention and control of myopia.

This largest international genome-wide study was based on the meta-analysis of 45,758 subjects, including 37,382 individuals of European ancestry and 8,376 from Asian countries, with the concerted efforts of 64 universities and research institutes in 13 countries. On Hong Kong side, joining the CREAM are Dr Jeremy Guggenheim, Associate Professor at PolyU's School of Optometry, and Professor Yip Shea-ping, Associate Head (Research) of PolyU's Department of Health Technology and Informatics. Both of them are also members of PolyU's Centre for Myopia Research.

PolyU researchers also noted that over the past 30 years, the number of Hong Kong children developing myopia has risen alarmingly. This year, about 80 per cent will have the condition by the time they leave school. Similarly high rates of myopia are seen in cities on the Chinese mainland, Japan, Taiwan and Singapore.

People with myopia have longer than normal eyeballs, which result in their focusing of images in front of their retinas instead of on them. It is estimated that up to 80% of Asians and 30% of Caucasians are myopic, and high myopia can lead to blindness. Environmental risk factors may have played a large part in increasing the prevalence in Asia over the past half-century, such as children spending less time doing outdoor activities due to dense urbanisation and parental pressure to do well academically.

"It is important to identify genetic factors because they could open the door to developing drugs that can hinder myopia. We now have a long list of genes to examine in details, to find out how they put children at risk," explained PolyU optometry expert Dr Guggenheim.

Instead of recruiting subjects or families with high degrees of myopia, the meta-analyses examined data of unselected subjects from health studies, which would be more representative of people around the world.

"We have found 16 new loci of genes for refractive error in people of European descent, of which 8 loci are shared with people of Chinese, Indian or Malay descent. In addition, we have confirmed a further 8 associated loci." said Professor Yip.

The consortium also identified new candidate genes involved in possible mechanisms linked to eye growth and myopia. Some of the genes may be involved in the growth of the sclera, the white outer layer of the eyeball, while other genes may be involved in determining the strength of chemical signals generated by the retina when viewing images, which may influence the onset and progression of myopia.

According to this study, people with all the genetic risk factors have a tenfold-increased risk of developing myopia.

The findings have recently been published in Nature Genetics.

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>