Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientists help identify genes causing myopia

04.06.2013
Two researchers from The Hong Kong Polytechnic University have been collaborating with the Consortium for Refractive Error and Myopia (CREAM) in a global study, which identified 24 genes leading to short-sightedness, thus paved the way for further research on the prevention and control of myopia.
Two researchers from The Hong Kong Polytechnic University (PolyU) are taking an active role in a global study which has unlocked the genetic origin of myopia. Through their collaboration with the Consortium for Refractive Error and Myopia (CREAM), 24 genes leading to short-sightedness have been identified, thus paving the way for further research on the prevention and control of myopia.

This largest international genome-wide study was based on the meta-analysis of 45,758 subjects, including 37,382 individuals of European ancestry and 8,376 from Asian countries, with the concerted efforts of 64 universities and research institutes in 13 countries. On Hong Kong side, joining the CREAM are Dr Jeremy Guggenheim, Associate Professor at PolyU's School of Optometry, and Professor Yip Shea-ping, Associate Head (Research) of PolyU's Department of Health Technology and Informatics. Both of them are also members of PolyU's Centre for Myopia Research.

PolyU researchers also noted that over the past 30 years, the number of Hong Kong children developing myopia has risen alarmingly. This year, about 80 per cent will have the condition by the time they leave school. Similarly high rates of myopia are seen in cities on the Chinese mainland, Japan, Taiwan and Singapore.

People with myopia have longer than normal eyeballs, which result in their focusing of images in front of their retinas instead of on them. It is estimated that up to 80% of Asians and 30% of Caucasians are myopic, and high myopia can lead to blindness. Environmental risk factors may have played a large part in increasing the prevalence in Asia over the past half-century, such as children spending less time doing outdoor activities due to dense urbanisation and parental pressure to do well academically.

"It is important to identify genetic factors because they could open the door to developing drugs that can hinder myopia. We now have a long list of genes to examine in details, to find out how they put children at risk," explained PolyU optometry expert Dr Guggenheim.

Instead of recruiting subjects or families with high degrees of myopia, the meta-analyses examined data of unselected subjects from health studies, which would be more representative of people around the world.

"We have found 16 new loci of genes for refractive error in people of European descent, of which 8 loci are shared with people of Chinese, Indian or Malay descent. In addition, we have confirmed a further 8 associated loci." said Professor Yip.

The consortium also identified new candidate genes involved in possible mechanisms linked to eye growth and myopia. Some of the genes may be involved in the growth of the sclera, the white outer layer of the eyeball, while other genes may be involved in determining the strength of chemical signals generated by the retina when viewing images, which may influence the onset and progression of myopia.

According to this study, people with all the genetic risk factors have a tenfold-increased risk of developing myopia.

The findings have recently been published in Nature Genetics.

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>