Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU makes great strides in developing cancer drugs

09.04.2009
The Hong Kong Polytechnic University has achieved further breakthrough in developing cancer drugs. The innovation has recently been awarded at the 37th International Exhibition of Inventions, New Techniques and Products of Geneva.

The Hong Kong Polytechnic University (PolyU) has achieved further breakthrough in developing cancer drugs through making use of advanced biotechnology. This breakthrough not only gives a ray of hope for cancer patients, but also revolutionizes the concept of cancer drug development.

This innovation has recently been awarded the Prize of the State of Geneva (third runner-up prize) and a Gold Medal with Jury’s Commendation at the 37th International Exhibition of Inventions, New Techniques and Products of Geneva.

Developed by Associate Professor Dr Thomas Leung Yun-chung and Assistant Professor Dr Thomas Lo Wai-hung of the University's Department of Applied Biology and Chemical Technology, the new drugs work on the mechanism of starving cancer cells through depletion of arginine - a key nutrient for many cancer cells.

PolyU researchers have proved that the depletion or lowering of blood arginine concentrations is effective in inhibiting the proliferation of liver cancer. The research paper on this important finding was first published in the authoritative, highly cited journal Cancer Research, published by the American Association for Cancer Research (January 2007 issue). This paper has shed new light on the development of novel arginine-depleting cancer drug for treating liver cancer (hepatocellular carcinoma).

The main constituent of this new drug is arginase, an enzyme that degrades arginine, with urea as an end-product. However, naturally occurring arginase has a very short half-life and thus cannot be used for therapeutic purpose. Using state-of-the-art DNA technology, PolyU researchers produced in 2005 a recombinant human arginase that, after chemical modification, has a significantly prolonged half-life for therapeutic use. More recently, they have further invented a novel drug based on naturally occurring thermostable Bacillus arginase (BCA). A patent application has been filed for this novel drug.

This breakthrough has a far-reaching impact in that the second generation of cancer drugs developed by PolyU researchers could provide a cure not just for liver cancer, but also for other deadly cancer diseases. In the laboratory settings, the new drug has been proved to work in cell culture for breast cancer, cervical cancer, skin cancer, pancreatic cancer, lung cancer, colorectal cancer, and gastric cancer.

Pre-clinical studies conducted on the use of this drug in nude mice showed that the drug is effective in depleting blood arginine and inhibiting breast cancer. The use of this new drug has opened up many new opportunities for effective treatment of different types of cancer. As this anti-cancer therapy is a targeted approach, it only affects cancer cells but not normal cells, causing less side effects than traditional cytotoxic chemotherapy.

Furthermore, the new drug is more stable with a longer blood circulating half-life, which means cancer patients can receive fewer injections of smaller amounts of this drug to achieve the same result. The new drug is also purer because of its homogenous structure and the production cost is expected to be lower because of its simple form.

The first generation of cancer drug based on arginine depletion has been proved to work on liver cancer and is now going through the clinical trial stages with the support of Queen Mary Hospital and the Centre for the Study of Liver Diseases at the University of Hong Kong. The second generation of cancer drugs will also go through similar testing stages in the years ahead.

The discovery of this new drug is supported by research funding from the Lo Ka Chung Charity Foundation and the Simatelex Charitable Foundation. The research work is being undertaken at the University’s Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, which was set up in December 2006 with a generous donation of HK$20 million from Mr Lo.

This innovation, together with the descriptions of five other intriguing research projects, are being put on public display at the "PolyU Achievements Exhibition" which runs from 6 to 9 April on the university campus.

Evelyn Chan | Research asia research news
Further information:
http://www.researchsea.com
http://www.polyu.edu.hk/cpa/polyu/hotnews/details_e.php?year=2009&news_id=1609

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>