Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU makes great strides in developing cancer drugs

09.04.2009
The Hong Kong Polytechnic University has achieved further breakthrough in developing cancer drugs. The innovation has recently been awarded at the 37th International Exhibition of Inventions, New Techniques and Products of Geneva.

The Hong Kong Polytechnic University (PolyU) has achieved further breakthrough in developing cancer drugs through making use of advanced biotechnology. This breakthrough not only gives a ray of hope for cancer patients, but also revolutionizes the concept of cancer drug development.

This innovation has recently been awarded the Prize of the State of Geneva (third runner-up prize) and a Gold Medal with Jury’s Commendation at the 37th International Exhibition of Inventions, New Techniques and Products of Geneva.

Developed by Associate Professor Dr Thomas Leung Yun-chung and Assistant Professor Dr Thomas Lo Wai-hung of the University's Department of Applied Biology and Chemical Technology, the new drugs work on the mechanism of starving cancer cells through depletion of arginine - a key nutrient for many cancer cells.

PolyU researchers have proved that the depletion or lowering of blood arginine concentrations is effective in inhibiting the proliferation of liver cancer. The research paper on this important finding was first published in the authoritative, highly cited journal Cancer Research, published by the American Association for Cancer Research (January 2007 issue). This paper has shed new light on the development of novel arginine-depleting cancer drug for treating liver cancer (hepatocellular carcinoma).

The main constituent of this new drug is arginase, an enzyme that degrades arginine, with urea as an end-product. However, naturally occurring arginase has a very short half-life and thus cannot be used for therapeutic purpose. Using state-of-the-art DNA technology, PolyU researchers produced in 2005 a recombinant human arginase that, after chemical modification, has a significantly prolonged half-life for therapeutic use. More recently, they have further invented a novel drug based on naturally occurring thermostable Bacillus arginase (BCA). A patent application has been filed for this novel drug.

This breakthrough has a far-reaching impact in that the second generation of cancer drugs developed by PolyU researchers could provide a cure not just for liver cancer, but also for other deadly cancer diseases. In the laboratory settings, the new drug has been proved to work in cell culture for breast cancer, cervical cancer, skin cancer, pancreatic cancer, lung cancer, colorectal cancer, and gastric cancer.

Pre-clinical studies conducted on the use of this drug in nude mice showed that the drug is effective in depleting blood arginine and inhibiting breast cancer. The use of this new drug has opened up many new opportunities for effective treatment of different types of cancer. As this anti-cancer therapy is a targeted approach, it only affects cancer cells but not normal cells, causing less side effects than traditional cytotoxic chemotherapy.

Furthermore, the new drug is more stable with a longer blood circulating half-life, which means cancer patients can receive fewer injections of smaller amounts of this drug to achieve the same result. The new drug is also purer because of its homogenous structure and the production cost is expected to be lower because of its simple form.

The first generation of cancer drug based on arginine depletion has been proved to work on liver cancer and is now going through the clinical trial stages with the support of Queen Mary Hospital and the Centre for the Study of Liver Diseases at the University of Hong Kong. The second generation of cancer drugs will also go through similar testing stages in the years ahead.

The discovery of this new drug is supported by research funding from the Lo Ka Chung Charity Foundation and the Simatelex Charitable Foundation. The research work is being undertaken at the University’s Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, which was set up in December 2006 with a generous donation of HK$20 million from Mr Lo.

This innovation, together with the descriptions of five other intriguing research projects, are being put on public display at the "PolyU Achievements Exhibition" which runs from 6 to 9 April on the university campus.

Evelyn Chan | Research asia research news
Further information:
http://www.researchsea.com
http://www.polyu.edu.hk/cpa/polyu/hotnews/details_e.php?year=2009&news_id=1609

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>