Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New polymer research could boost probiotics industry

06.09.2011
A protective delivery vehicle that shuttles friendly bacteria safely through the stomach to the intestines could provide a major boost for the probiotics industry. The new technology could also be used for the delivery of certain drugs and even increase calcium absorption, according to research presented at the Society for General Microbiology's Autumn Conference at the University of York this week.

The probiotic industry is worth £200 million a year in the UK. Probiotic foods contain live beneficial bacteria and may help maintain and improve gut health, strengthen immunity, fight gastro-intestinal and respiratory disorders and even show anti-tumour effects.

One of the challenges for manufacturers of probiotic foods is getting high enough numbers of these bacteria into the intestines; most perish under the heavy acidic conditions of the stomach. Scientists from the University of Wolverhampton led by Dr Iza Radecka, have now found a solution to this problem by developing a special type of biopolymer that protects probiotic bacteria in the stomach and delivers them safely to the intestines where they can get to work.

The novel biopolymer is completely biodegradable and is able to remain intact in the stomach and continue to the intestine, where it disintegrates, releasing the bacteria. The researchers showed that beneficial bacteria including Lactobacillus and Bifidobacteria strains were able to survive in a simulated gastric juice solution for up to four hours when they were coated with the polymer. Bacteria that did not have this coating only survived for two hours. "Our research uses a novel biodegradable, edible and non-toxic biopolymer to protect bacteria during storage and after ingestion so that consistent numbers of live and viable friendly bacteria can be administered via food products," explained Dr Radecka.

The researchers believe their findings could have a major impact on the probiotics industry. "There is an ongoing debate about the usefulness of probiotics. Some data showing positive effects is irreproducible and one of the reasons for this could be insufficient numbers of live bacteria reaching the intestine. A product that delivers a consistent number of bacteria to the intestine is therefore essential," said Aditya Bhat, who is carrying out the research and is presenting the group's work. "This will hopefully lead to better quality probiotic food products that can be used to prevent or control gastro-intestinal, dental or respiratory disorders."

The new biopolymer also has the potential for clinical applications outside of the probiotics industry, suggested Aditya "A variation of this polymer can be used to increase calcium absorption in the intestine that would help maintain healthy bone structure and condition. Also, it looks feasible for the polymer to be used for administering unstable drugs that disintegrate in the gastro-intestinal tract," he said.

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>