Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New polymer research could boost probiotics industry

06.09.2011
A protective delivery vehicle that shuttles friendly bacteria safely through the stomach to the intestines could provide a major boost for the probiotics industry. The new technology could also be used for the delivery of certain drugs and even increase calcium absorption, according to research presented at the Society for General Microbiology's Autumn Conference at the University of York this week.

The probiotic industry is worth £200 million a year in the UK. Probiotic foods contain live beneficial bacteria and may help maintain and improve gut health, strengthen immunity, fight gastro-intestinal and respiratory disorders and even show anti-tumour effects.

One of the challenges for manufacturers of probiotic foods is getting high enough numbers of these bacteria into the intestines; most perish under the heavy acidic conditions of the stomach. Scientists from the University of Wolverhampton led by Dr Iza Radecka, have now found a solution to this problem by developing a special type of biopolymer that protects probiotic bacteria in the stomach and delivers them safely to the intestines where they can get to work.

The novel biopolymer is completely biodegradable and is able to remain intact in the stomach and continue to the intestine, where it disintegrates, releasing the bacteria. The researchers showed that beneficial bacteria including Lactobacillus and Bifidobacteria strains were able to survive in a simulated gastric juice solution for up to four hours when they were coated with the polymer. Bacteria that did not have this coating only survived for two hours. "Our research uses a novel biodegradable, edible and non-toxic biopolymer to protect bacteria during storage and after ingestion so that consistent numbers of live and viable friendly bacteria can be administered via food products," explained Dr Radecka.

The researchers believe their findings could have a major impact on the probiotics industry. "There is an ongoing debate about the usefulness of probiotics. Some data showing positive effects is irreproducible and one of the reasons for this could be insufficient numbers of live bacteria reaching the intestine. A product that delivers a consistent number of bacteria to the intestine is therefore essential," said Aditya Bhat, who is carrying out the research and is presenting the group's work. "This will hopefully lead to better quality probiotic food products that can be used to prevent or control gastro-intestinal, dental or respiratory disorders."

The new biopolymer also has the potential for clinical applications outside of the probiotics industry, suggested Aditya "A variation of this polymer can be used to increase calcium absorption in the intestine that would help maintain healthy bone structure and condition. Also, it looks feasible for the polymer to be used for administering unstable drugs that disintegrate in the gastro-intestinal tract," he said.

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>