Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polarizers May Enhance Remote Chemical Detection

13.03.2009
Chemists can analyze the composition of a suspected bomb -- without actually touching and possibly detonating it -- using a technique called laser-induced breakdown spectroscopy, or LIBS.

The tool is also commonly used for "stand-off" detection in such harsh or potentially dangerous environments as blast furnaces, nuclear reactors and biohazard sites and on unmanned planetary probes like the Mars rovers.

Information provided by LIBS, however, is sometimes clouded by interfering signals caught by the spectroscope -- and eliminating the background can be expensive. But a group of chemists at the University of Illinois at Chicago reports that equipping LIBS with a polarizing filter can do the job at a lower cost and probably with equal or greater sensitivity than the tools presently in use.

Robert Gordon, professor and head of chemistry at UIC, became interested in polarized light after reading books by cosmologist Brian Greene that described a slight polarization of the cosmic microwave background left over from the Big Bang. Out of curiosity, Gordon had his lab group zap a crystal of silicon by firing pairs of near-infrared laser pulses at 80 femtoseconds -- or 80 millionths of a billionth of a second. This "mini-Big Bang-like" laser ablation caused a brief spark, or plasma, that gave off ultraviolet light, which the group checked for polarization.

"We thought we'd see maybe a few percent polarization," said Gordon. "But when we saw 100 percent, we were totally astonished."

The spectrum of light they studied, similar to the rainbow a prism creates when held up to sunlight, includes a series of lines that are the hidden signatures of chemical elements. To get rid of the background spectrum and focus just on the element lines, current LIBS use a time-resolved method that works like a camera shutter by snapping at nanosecond speeds. Gordon's group discovered that by eliminating the shutter and instead using a rotating polarizer, they could filter out the background and focus on the lines.

"The polarizer costs just pennies, whereas a time-shutter is a very expensive component," Gordon said. "By simply putting a polarizer in a detector and rotating it to get maximum signal-to-noise ratio, you can improve the quality of the signal effortlessly and fairly cheaply."

Gordon said there is still basic work that needs to be done to answer why the light gets polarized. He said that varying the angle and the intensity of the laser pulses used to ablate the sample material may provide additional ways to enhance LIBS.

Gordon and his coworkers first reported their findings in the Feb. 15 issue of Optics Letters and will present their results at the Conference on Lasers and Electro-Optics May 31-June 5 in Baltimore.

Gordon's coworkers include postdoctoral research associates Youbo Zhao and Yaoming Liu, doctoral student Sima Singha, and former undergraduate Tama Witt.

Funding came from the National Science Foundation and the U.S. Air Force Research Laboratory Materials and Manufacturing Directorate.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>