Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polarizers May Enhance Remote Chemical Detection

13.03.2009
Chemists can analyze the composition of a suspected bomb -- without actually touching and possibly detonating it -- using a technique called laser-induced breakdown spectroscopy, or LIBS.

The tool is also commonly used for "stand-off" detection in such harsh or potentially dangerous environments as blast furnaces, nuclear reactors and biohazard sites and on unmanned planetary probes like the Mars rovers.

Information provided by LIBS, however, is sometimes clouded by interfering signals caught by the spectroscope -- and eliminating the background can be expensive. But a group of chemists at the University of Illinois at Chicago reports that equipping LIBS with a polarizing filter can do the job at a lower cost and probably with equal or greater sensitivity than the tools presently in use.

Robert Gordon, professor and head of chemistry at UIC, became interested in polarized light after reading books by cosmologist Brian Greene that described a slight polarization of the cosmic microwave background left over from the Big Bang. Out of curiosity, Gordon had his lab group zap a crystal of silicon by firing pairs of near-infrared laser pulses at 80 femtoseconds -- or 80 millionths of a billionth of a second. This "mini-Big Bang-like" laser ablation caused a brief spark, or plasma, that gave off ultraviolet light, which the group checked for polarization.

"We thought we'd see maybe a few percent polarization," said Gordon. "But when we saw 100 percent, we were totally astonished."

The spectrum of light they studied, similar to the rainbow a prism creates when held up to sunlight, includes a series of lines that are the hidden signatures of chemical elements. To get rid of the background spectrum and focus just on the element lines, current LIBS use a time-resolved method that works like a camera shutter by snapping at nanosecond speeds. Gordon's group discovered that by eliminating the shutter and instead using a rotating polarizer, they could filter out the background and focus on the lines.

"The polarizer costs just pennies, whereas a time-shutter is a very expensive component," Gordon said. "By simply putting a polarizer in a detector and rotating it to get maximum signal-to-noise ratio, you can improve the quality of the signal effortlessly and fairly cheaply."

Gordon said there is still basic work that needs to be done to answer why the light gets polarized. He said that varying the angle and the intensity of the laser pulses used to ablate the sample material may provide additional ways to enhance LIBS.

Gordon and his coworkers first reported their findings in the Feb. 15 issue of Optics Letters and will present their results at the Conference on Lasers and Electro-Optics May 31-June 5 in Baltimore.

Gordon's coworkers include postdoctoral research associates Youbo Zhao and Yaoming Liu, doctoral student Sima Singha, and former undergraduate Tama Witt.

Funding came from the National Science Foundation and the U.S. Air Force Research Laboratory Materials and Manufacturing Directorate.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>