Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PMH researchers create an organic nanoparticle that uses sound and heat to find and treat tumors

21.03.2011
A team of scientists from Princess Margaret Hospital have created an organic nanoparticle that is completely non-toxic, biodegradable and nimble in the way it uses light and heat to treat cancer and deliver drugs. (A nanoparticle is a minute molecule with novel properties).

The findings, published online today in Nature Materials (DOI: 10.1038/NMAT2986) are significant because unlike other nanoparticles, the new nanoparticle has a unique and versatile structure that could potentially change the way tumors are treated, says principal investigator Dr. Gang Zheng, Senior Scientist, Ontario Cancer Institute (OCI), Princess Margaret Hospital at University Health Network.

Dr. Zheng says: "In the lab, we combined two naturally occurring molecules (chlorophyll and lipid) to create a unique nanoparticle that shows promise for numerous diverse light-based (biophotonic) applications. The structure of the nanoparticle, which is like a miniature and colorful water balloon, means it can also be filled with drugs to treat the tumor it is targeting."

It works this way, explains first author Jonathan Lovell, a doctoral student at OCI: "Photothermal therapy uses light and heat to destroy tumors. With the nanoparticle's ability to absorb so much light and accumulate in tumors, a laser can rapidly heat the tumor to a temperature of 60 degrees and destroy it. The nanoparticle can also be used for photoacoustic imaging, which combines light and sound to produce a very high-resolution image that can be used to find and target tumors." He adds that once the nanoparticle hits its tumor target, it becomes fluorescent to signal "mission accomplished".

"There are many nanoparticles out there, but this one is the complete package, a kind of one-stop shopping for various types of cancer imaging and treatment options that can now be mixed and matched in ways previously unimaginable. The unprecedented safety of this nanoparticle in the body is the icing on the cake. We are excited by the possibilities for its use in the clinic," says Dr. Zheng.

The research was financially supported by grants and fellowships from the Ontario Institute for Cancer Research, the Canadian Cancer Society, the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes of Health Research, the Joey and Toby Tanenbaum/Brazilian Ball Chair in Prostate Cancer Research, and in part from the Campbell Family Institute for Cancer Research and the Ministry of Health and Long-Term Care , and The Princess Margaret Hospital Foundation.

About Princess Margaret Hospital

Princess Margaret Hospital and its research arm Ontario Cancer Institute, which includes the Campbell Family Cancer Research Institute, have achieved an international reputation as global leaders in the fight against cancer. Princess Margaret Hospital is a member of the University Health Network, which also includes Toronto General Hospital and Toronto Western Hospital. All three are research hospitals affiliated with the University of Toronto. For more information, go to www.uhn.ca

Sommer Ellis | EurekAlert!
Further information:
http://www.uhn.ca

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>