Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pluripotent and Differentiated Human Cells Reside in Decidedly Different Epigenomic Landscapes

10.05.2010
Human embryonic stem cells (hESCs) possess remarkable properties of self-renewal and pluripotency, the ability to become almost any kind of cell within the body. And yet they share the same genome or set of genes with lineage-committed cells, cells fated to be or do one thing.

Scientists have long suspected that the distinct properties of different cells were attributable to their particular epigenomes – the collection of attendant molecules, compounds and chemicals that direct and influence the behaviors and functions of genes. The question has been: how much do the epigenomes of hESCs and lineage-committed cells differ? The answer was not clear.

In a paper published in the May 7 issue of Cell—Stem Cell, Bing Ren, PhD, a professor of cellular and molecular medicine at the University of California, San Diego and a member of the Ludwig Institute for Cancer Research, reports with colleagues that the epigenomic landscapes of hESCs and lineage-committed cells are, in fact, drastically different.

“You can think of it this way,” said Ren. “Neurons and skin cells share the identical set of genetic material – DNA – yet their structure and function are very different. The difference can be attributed to differences in their epigenome. This is analogous to computer hardware and software. You can load the same computer with distinct operating systems, such as Linux or Windows, or with different programs and the computer will run very different types of operations.

“Similarly, the unique epigenome in each cell directs the cell to interpret its genetic information differently in response to common environmental factors. Understanding the differences of epigenomic landscapes in different cell types, especially between pluripotent and lineage-committed cells, is essential for us to study human development and mechanisms of human diseases.”

To compare these epigenomic landscapes, Ren and colleagues looked at chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, the latter a type of cell commonly found in animal connective tissues. Chromatin is a complex combination of DNA and proteins that makes up chromosomes. The basic component of the chromatin is a complex of proteins called histones. Histone proteins can be chemically modified depending upon the contexts of the underlying gene sequences and can influence gene activities locally.

The scientists found that nearly one-third of the genome differs in chromatin structure. Most of the changes arise from dramatic redistributions of repressive chromatin modifications that involve the addition of methyl-groups to particular lysine residues on the histone protein.

“A fundamental question is how the identical genome sequence gives rise to a diversity of cell types with different gene expression profiles and cellular functions,” said David Hawkins of the Ludwig Institute and co-first author of the study. “We’ve found evidence that lineage-committed cells are characterized by significantly expanded domains of repressive chromatin that selectively affect genes involved in pluripotency and development. In other words, these epigenetic mechanisms play a critical role in deciding a cell’s fate and function, and in maintaining it.”

The findings are likely to push forward the emerging science of epigenetics, which seeks to identify the processes that impact gene regulation and help determine human development and disease. Ren is director of The San Diego Epigenome Center at the Ludwig Institute. San Diego is one of four centers in the United States participating in the National Institutes of Health’s Roadmap Epigenomics Program, a five-year, $190 million effort.

Co-authoring the paper with Ren are R. David Hawkins, Gary C. Hon, Leonard K. Lee and QueMinh Ngo, E. Edsall, Samantha Kuan, Ying Luu, Sarit Klugman, Zhen Ye, Celso Espinoza and Saurabh Agarwahl, all of the Ludwig Institute for Cancer Research in La Jolla, CA; Li Shen and Wei Wang, department of chemistry and biochemistry at the University of California, San Diego; Ryan Lister, Mattia Pelizzola and Joseph R. Ecker at the Genomic Analysis Laboratory, The Salk Institute for Biological Studies in La Jolla, CA; and Jessica Antosiewicz-Bourget, Victor Ruotti, Ron Stewart and James A. Thomson at the Morgridge Institute for Research in Madison, WI.

Scott LaFee | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>