Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plumage colour traits more extreme over time

03.05.2010
Ever since Darwin, researchers have tried to explain the enormous diversity of plumage colour traits in birds. Now researchers at the University of Gothenburg, Sweden, are adding something new to this particular field of research, which is so rich in tradition, by demonstrating how a bird can become red instead of yellow.

Sixteen years ago, Malte Andersson, a professor at the University of Gothenburg, published the book Sexual Selection, which analysed how animals use behavioural signals, colours and other ornamentation to compete for a mate. Based on, among other things, a famous experiment involving a long-tailed widowbird published in Nature in 1982, and is now a standard zoological work that has been cited in around 5,000 scientific articles and innumerable textbooks.

Next generation
The third generation of ecological researchers at the Department of Zoology at the University of Gothenburg are now publishing their findings in this field. Together with colleagues and project leader Staffan Andersson, postgraduate student Maria Prager has studied how sexual signals in widowbirds and bishops (Euplectes spp.) are produced and change during the evolutionary process.
Enormous range
In the past, the function of signals was much disputed but is now well-known: it has to do with attracting a mate for reproduction and deterring rivals. But why the animal kingdom displays such an enormous range of signals and traits has still not been explained. The African widowbirds and bishops are an excellent illustration of this phenomenon: despite being closely related and using classic avian signals – elongated tail feathers and bright colours – there is a fascinating amount of variation in the traits of these species.
More extreme
Maria Prager's thesis follows on from field studies that indicate a general pattern amongst these and many other birds: females prefer males with the longest tail feathers, while males with larger and redder colour signals are able to occupy larger breeding territories. Maria Prager's hypothesis was that the signals of widowbirds and bishops thus have become ever more extreme during evolution.
DNA-studies
A lack of fossil feathers means she has studied modern DNA in order to reconstruct the evolution of colours and plumage in the genealogical trees of these species. The results show that today's species of widowbirds and bishops are descended from birds with short tails and yellow colour signals.
Genetic imitations
The current red colour has evolved through several means: the birds store large amounts of yellow dietary pigments in their feathers, which produce a red hue, or they convert some of the dietary yellow pigment to red with the aid of an enzyme. As yellow widowbirds and bishops seem to lack this enzyme, colour diversification may be due in part to physiological or genetic limitations in some species.
Evolution of colour
Malte Andersson was a pioneer in work to test and further develop Darwin's concept that the reproductive success of males often depends on eye-catching ornamentation. Maria Prager's research now clarifies three new aspects of colour signalling: the pigment mechanisms behind colours, the development of colours in individuals, and the evolution of colour signals over time.

"Our combined research provides a unique and complete picture of colour evolution in birds, and there are few other animals for which we now have so much knowledge of the various aspects of these signals."

Contact:
Maria Prager, Department of Zoology, University of Gothenburg
+46 739 408959
maria.prager@zool.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/21697

Further reports about: Genetic imitations Gothenburg Zoology genealogical trees plumage

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>