Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plumage colour traits more extreme over time

03.05.2010
Ever since Darwin, researchers have tried to explain the enormous diversity of plumage colour traits in birds. Now researchers at the University of Gothenburg, Sweden, are adding something new to this particular field of research, which is so rich in tradition, by demonstrating how a bird can become red instead of yellow.

Sixteen years ago, Malte Andersson, a professor at the University of Gothenburg, published the book Sexual Selection, which analysed how animals use behavioural signals, colours and other ornamentation to compete for a mate. Based on, among other things, a famous experiment involving a long-tailed widowbird published in Nature in 1982, and is now a standard zoological work that has been cited in around 5,000 scientific articles and innumerable textbooks.

Next generation
The third generation of ecological researchers at the Department of Zoology at the University of Gothenburg are now publishing their findings in this field. Together with colleagues and project leader Staffan Andersson, postgraduate student Maria Prager has studied how sexual signals in widowbirds and bishops (Euplectes spp.) are produced and change during the evolutionary process.
Enormous range
In the past, the function of signals was much disputed but is now well-known: it has to do with attracting a mate for reproduction and deterring rivals. But why the animal kingdom displays such an enormous range of signals and traits has still not been explained. The African widowbirds and bishops are an excellent illustration of this phenomenon: despite being closely related and using classic avian signals – elongated tail feathers and bright colours – there is a fascinating amount of variation in the traits of these species.
More extreme
Maria Prager's thesis follows on from field studies that indicate a general pattern amongst these and many other birds: females prefer males with the longest tail feathers, while males with larger and redder colour signals are able to occupy larger breeding territories. Maria Prager's hypothesis was that the signals of widowbirds and bishops thus have become ever more extreme during evolution.
DNA-studies
A lack of fossil feathers means she has studied modern DNA in order to reconstruct the evolution of colours and plumage in the genealogical trees of these species. The results show that today's species of widowbirds and bishops are descended from birds with short tails and yellow colour signals.
Genetic imitations
The current red colour has evolved through several means: the birds store large amounts of yellow dietary pigments in their feathers, which produce a red hue, or they convert some of the dietary yellow pigment to red with the aid of an enzyme. As yellow widowbirds and bishops seem to lack this enzyme, colour diversification may be due in part to physiological or genetic limitations in some species.
Evolution of colour
Malte Andersson was a pioneer in work to test and further develop Darwin's concept that the reproductive success of males often depends on eye-catching ornamentation. Maria Prager's research now clarifies three new aspects of colour signalling: the pigment mechanisms behind colours, the development of colours in individuals, and the evolution of colour signals over time.

"Our combined research provides a unique and complete picture of colour evolution in birds, and there are few other animals for which we now have so much knowledge of the various aspects of these signals."

Contact:
Maria Prager, Department of Zoology, University of Gothenburg
+46 739 408959
maria.prager@zool.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/21697

Further reports about: Genetic imitations Gothenburg Zoology genealogical trees plumage

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>