Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasticity of hormonal response permits rapid gene expression reprogramming

16.05.2011
Gene expression reprogramming may allow cancer cell growth as well as normal differentiation

Gene expression is the process of converting the genetic information encoded in DNA into a final gene product such as a protein or any of several types of RNA.

Scientists have long thought that the gene programs regulated by different physiological processes throughout the body are robustly pre-determined and relatively fixed for every specialized cell. But a new study by researchers from the University of California, San Diego School of Medicine reveals the unsuspected plasticity of some of these gene expression programs.

Their findings, to be published in the May 15 advanced on-line edition of journal Nature, show the existence of distinct regulated gene programs that can be alternatively induced, depending on the intracellular conditions. The study helps explain why, for example, the same signaling event – such as cellular response to circulating hormones in the human body – can be beneficial for normal development, but also becomes cancerous when combined with other genetic lesions.

The UCSD scientists found that the response to the hormone androgen in prostatic epithelial cells can be subject to dramatic reprogramming events that lead to alternative gene programs and profiles. They suggest that this plasticity could be the basis for development and progression of at least some forms of cancer, as well as for cell differentiation during development.

From a patient perspective, the results of this study may explain how hormonal therapy, applied to prostate cancer patients to block the pre-established, hormone-regulated tumor growth, escapes this treatment in a more malignant way.

"Aggressive cell types, such as those found in prostate cancer, basically learn to ignore the hormone therapy," said co-principal investigator Xiang-Dong Fu, PhD, professor in the UCSD Department of Cellular and Molecular Medicine, who collaborated with co-principal investigator Michael G. Rosenfeld, MD, professor in the UCSD Department of Medicine and a Howard Hughes Medical Institute investigator.

In this study, the UCSD researchers looked at the down-regulation in expression of a single transcription factor, FoxA1, an unfavorable sign in certain advanced prostate tumors. They present evidence that FoxA1, which is needed for normal prostatic development, can simultaneously facilitate and restrict the genomic binding of the receptor that controls the hormonal response. Consequently, down-regulation of FoxA1 triggers reprogramming of the hormonal response.

Interestingly, other cancer-associated events, such as specific AR genetic mutations, appear capable of inducing a similar effect. The subsequent massive switch in AR binding to a distinct cohort of pre-established regulatory elements in the human genome (called enhancers) is what may allow the cancer cells to "reprogram" themselves.

These findings suggest that therapies designed to stop the switch between different alternative gene programs may be more effective than simply blocking the hormonal response, according to co-first author Dong Wang, PhD and co-first author and co-principal investigator Ivan Garcia-Bassets, PhD, research assistant professor in the UCSD Division of Endocrinology and Metabolism, Department of Medicine.

Additional contributors to the study include co-first author Chris Benner, PhD, Jinsong Qiu, PhD, Minna U. Kaikkonen, PhD, and Christopher K. Glass, MD, PhD, UCSD Department of Cellular and Molecular Medicine; Wenbo Li, PhD, Kenneth A. Ohgi, UCSD Department of Medicine, Howard Hughes Medical Institute; Xue Su and Wen Liu, Howard Hughes Medical Institute and UCSD graduate program in biology; and Yiming Zhou, PhD, Dignomics LLC, Malden, MA.

This comprehensive study of the mechanism underlying gene expression reprogramming was supported by funding from the Department of Defense, the National Institutes of Health, the National Cancer Institute, the Prostate Cancer Foundation and the Howard Hughes Medical Institute.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>