Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic products leach toxic substances

17.05.2011
Many plastic products contain hazardous chemicals that can leach to the surroundings. In studies conducted at the University of Gothenburg, a third of the tested plastic products released toxic substances, including 5 out of 13 products intended for children.

“Considering how common plastic products are, how quickly the production of plastic has increased and the amount of chemicals that humans and the environment are exposed to, it is important to replace the most hazardous substances in plastic products with less hazardous alternatives,” says Delilah Lithner of the Department of Plant and Environmental Sciences at the University of Gothenburg.

Plastics exist in many different chemical compositions and are widespread in the society and the environment. Global annual production of plastics has doubled over the past 15 years, to 245 million tonnes in 2008. The plastic polymers are not regarded as toxic, but there may be toxic residual chemicals, chemical additives and degradation products in the plastic products that can leach out as they are not bound to the plastic polymer. Plastics also cause many waste problems.

In her research, Lithner studied the toxicity of 83 randomly selected plastic products and synthetic textiles. The newly purchased products were leached in pure (deionised) water for 1–3 days. The acute toxicity of the water was then tested using water fleas (Daphnia magna).

“A third of all the 83 plastic products and synthetic chemicals that were tested released substances that were acutely toxic to the water fleas, despite the leaching being mild. Five out of 13 products that were intended for children were toxic, for example bath toys and buoyancy aids such as inflatable armbands,” says Delilah Lithner.

The products that resulted in toxic water were soft to semi-soft products made from plasticised PVC or polyurethane, as well as epoxy products and textiles made from various plastic fibres. The toxicity was mainly caused by fat-soluble organic substances.

Lithner also studied the chemicals used to make around 50 different plastic polymers and has identified the plastic polymers for which the most hazardous chemicals are used. They were then ranked on the basis of the environmental and health hazard classifications that exist for the chemicals. Examples of plastic polymers made from the most hazardous chemicals are certain polyurethanes, polyacrylonitriles, PVC, epoxy and certain styrene copolymers. The results are of great benefit for further assessing environmental and health risks associated with plastic materials.

The thesis Environmental and health hazards of chemicals in plastic polymers and products was successfully defended in public on 6th May 2011. Supervisors: Prof. Göran Dave and Prof. Åke Larsson.

Contact:
Delilah Lithner, Department of Plant and Environmental Sciences at the University of Gothenburg, Sweden
+46 31-7864912
delilah.lithner@dpes.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/24978
http://www.gu.se

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>