Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants on steroids: Key missing link discovered

11.09.2009
Researchers at the Carnegie Institution's Department of Plant Biology have discovered a key missing link in the so-called signaling pathway for plant steroid hormones (brassinosteroids).

Many important signaling pathways are relays of molecules that start at the cell surface and cascade to the nucleus to regulate genes. This discovery marks the first such pathway in plants for which all the steps of the relay have been identified.

Since this pathway shares many similarities with pathways in humans, the discovery not only could lead to the genetic engineering of crops with higher yields, but also could be a key to understanding major human diseases such as cancer, diabetes, and Alzheimer's.

Steroids are important hormones in both animals and plants. Brassinosteroids regulate many aspects of growth and development in plants. Mutants deficient in brassinosteroids are often stunted and infertile. Brassinosteroids are similar in many respects to animal steroids, but appear to function very differently at the cellular level. Animal cells usually respond to steroids using internal receptor molecules within the cell nucleus, whereas in plants the receptors, called receptor-like kinases, are anchored to the outside surface of the cell membranes. For over a decade, scientists have tried to understand how the signal is passed from the cell surface to the nucleus to regulate gene expression. The final gaps were bridged in the study published in the advanced on-line issue of Nature Cell Biology September 6, 2009.

The research team unraveled the pathway in cells of Arabidopsis thaliana, a small flowering plant related to cabbage and mustard often used as a model organism in plant molecular biology.

"This is the first completely connected signaling pathway from a plant receptor-like kinase, which is one of the biggest gene families in plants," says Carnegie's Zhi-Yong Wang, leader of the research team. "The Arabidopsis genome encodes over 400 receptor-like kinases and in rice there are nearly 1,000. We know the functions of about a dozen or so. The completely connected brassinosteroid pathway uses at least six proteins to pass the signal from the receptor all the way to the nuclear genes expressed. This will be a new paradigm for understanding the functional mechanism of other receptor-like kinases."

Understanding the molecular mechanism of brassinosteroid signaling could help researchers develop strategies and molecular tools for genetic engineering of plants with modified sensitivity to hormones, either produced by the plant or sprayed on crops during cultivation, resulting in higher yield or improved traits. "We perhaps could engineer plants with altered sensitivity in different portions of the plant," says Wang. "For example, we could manipulate the signal pathway to increase the biomass accumulation in organs such as fruits that are important as agricultural products, an area highly relevant for food and biofuel production."

Another of the study's findings has potentially far-reaching consequences for human health. The newly identified brassinosteroid signaling pathway component shares evolutionarily conserved domains with the glycogen synthase kinase 3 (GSK3). "GSK3 is found in a wide range of organisms, including mammals," says Wang. "Our study identified a distinct mechanism for regulating GSK3 activity, different from what had been identified in earlier work. GSK3 is known to be critical in the development of health issues such as neural degeneration, cancer, and diabetes, so our finding could open up new avenues for research to understand and treat these diseases."

The research was supported by grants from the National Institutes of Health (R01GM066258), National Science Foundation (0724688), U.S. Department of Energy (DE-FG02-08ER15973), and the Herman Frasch Foundation.

The Carnegie Institution (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Zhi-Yong Wang | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>