Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How plants make cocaine

The discovery of the first enzyme in the pathway sheds new light on the evolution of alkaloid formation

Cocaine is one of the most commonly used (and abused) plant-derived drugs in the world, but we have almost no modern information on how plants produce this complex alkaloid.

Coca plant (Erythroxylum coca) and the molecular structure of cocaine (grey: carbon, blue: nitrogen, red: oxygen, white: hydrogen). Max Planck Institute for Chemical Ecology/ D’Auria, Jirschitzka

Immunolabeling (green areas) of MecgoR, the enzyme catalyzing the penultimate step of cocaine biosynthesis. The picture shows the strong accumulation of the enzyme in a cross section of a very young E. coca leaf, which is still curled around the growing stem tip. Bar: 0,1 mm. Max Planck Institute for Chemical Ecology/ D’Auria, Jirschitzka

Researchers from the Max Planck Institute for Chemical Ecology in Jena, Germany, have just discovered a key reaction in cocaine formation in the coca plant from South America, and identified the responsible enzyme. This enzyme was shown to belong to the aldo-keto-reductase protein family revealing some exciting new insights into the evolution of cocaine biosynthesis.

Humans encounter alkaloids every day

Alkaloids constitute a very large group of natural nitrogen-containing compounds with diverse effects on the human organism. A large variety of plant-produced alkaloids have strong pharmacological effects, and are used as toxins, stimulants, pharmaceuticals or recreational drugs, including caffeine, nicotine, morphine, quinine, strychnine, atropine and cocaine. Atropine, used to dilate the pupils of the eye, and the addictive drug cocaine are both tropane alkaloids which possess two distinctive, inter-connecting five- and seven-membered rings.

Plants commonly produce tropane and other alkaloids for protection against herbivores and other enemies. Species in seven plant families are known to produce tropane alkaloids, including the Brassicaceae (mustard family), Solanaceae (nightshade or potato family) and Erythroxylaceae (coca family). These families are not closely related to each other. For example, it is assumed that the last common ancestor of the Erythroxylaceae and the Solanaceae lived about 120 million years ago. But how similar are the tropane alkaloid biosynthetic pathways in these families? Was there a single original tropane alkaloid pathway which was lost in most other plant families during the course of evolution? Or, did tropane alkaloid biosynthesis arise independently on several different occasions?

Atropine and cocaine: Two tropane alkaloids, two plant species, two different enzymes

John D’Auria, project leader in the Department of Biochemistry at the Max Planck Institute for Chemical Ecology, has been studying the coca plant, from which the drug cocaine is derived. Native tribes in South America have been cultivating coca and chewing its leaves for at least 8000 years for their stimulant and hunger-suppressing properties.
Although the formation of cocaine has not been investigated in the last 40 years, the biosynthesis of the related tropane alkaloid, atropine, from belladonna (Solanaceae) is well-established. In the penultimate step, a ketone function is reduced to an alcohol residue. This key reaction is catalyzed by an enzyme of the short-chain dehydrogenase/reductase (SDR) protein family in belladonna. Among this group of enzymes are also many alcohol-degrading dehydrogenases in animals.

To find the corresponding enzyme in cocaine biosynthesis, Jan Jirschitzka, a PhD student in the group, searched the genome of the coca plant to look for SDR-like proteins. However, all the SDR genes that he cloned and expressed did not show any activity for the key reaction in cocaine formation. So he used a more classical approach − identifying the cocaine-synthesizing enzyme activity in extracts from coca leaves, purifying the responsible protein, isolating the polypeptide, and − after partial sequencing − cloning the corresponding gene.
Cocaine in young leaves, atropine in roots

“We obtained two very interesting results,” says Jonathan Gershenzon, director at the institute. “The enzyme reaction analogous to that in atropine synthesis − the conversion of the keto group into an alcohol residue − is catalyzed by a completely different enzyme in coca plants as compared to that in the Solanaceae, namely by an aldo-keto reductase (AKR).” The enzyme was named methylecgonone reductase (MecgoR). AKR enzymes are known in plants and also mammals, amphibians, yeast, protozoa, and bacteria. They are involved in the formation of steroid hormones, for example. The second result is that the MecgoR gene, as well as the protein, is highly active in the very young leaves of coca plants, but not in the roots. Atropine, on the other hand, is synthesized exclusively in the roots of belladonna, from where it is transported into the green organs of the plant. Based on these results, the Max Planck researchers conclude that the tropane alkaloid pathways in coca and belladonna evolved completely independently.
Elucidation of the MecgoR-catalyzed step in cocaine biosynthesis represents a major success, but the researchers are now continuing to investigate other important steps in the cocaine pathway. Also of interest is to learn how cocaine is stored in leaf tissue in such high amounts. This alkaloid can account for up to 10% of the dry weight of the immature coca leaf, a phenomenal amount for the accumulation of any one particular alkaloid. [JWK/AO]

Original publication:

Jan Jirschitzka, Gregor W. Schmidt, Michael Reichelt, Bernd Schneider, Jonathan Gershenzon, John C. D´Auria: Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proceedings of the National Academy of Sciences USA, Early Edition, June 4, 2012, DOI: 10.1073/pnas.1200473109

Further Information:

Dr. John C. D’Auria,, +49 3641 57 1335

Picture Requests:

Angela Overmeyer M.A., +49 3641 57-2110,
or download from

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>