Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants are „biting“ back


Calcium phosphate is a widespread biomineral in the animal kingdom: Bones and teeth largely consist of this very tough mineral substance. Researchers from Bonn University could now for the first time demonstrate the presence of calcium phosphate as a structural biomineral in higher plants. The substance provides the necessary “bite” to the stinging hairs of representatives of the rock nettle family (Loasaceae). It hardens the trichomes, which serve as a herbivore defense. Conversely, our native stinging nettles have stinging hairs hardened by glass-like silica. The results of the study are now published in the journal „Scientific Reports“.

Animals only eat them once: When the tongue touches the minute trichomes of rock nettles (Loasaceae), the tips of the stinging hairs break off and a painful cocktail pours out into the sensitive tissue. These well-defended plants have their centre of diversity in the South American Andes.

The colourful flower of the rock nettle Blumenbachia insignis in the Botanical Gardens of Bonn University.

(c) Photo: M. Weigend/Uni Bonn

Under the scanning electron microscope: Detail of the lower leaf surface of Loasa pallida. The red areas are mineralized (here not differentiated between different minerals).

(c) Image: H.-J. Ensikat und M. Weigend/Uni Bonn

„The mechanism is very similar to that of our well-known stinging nettles“, says Prof. Dr. Maximilian Weigend of the Nees-Institut for Biodiversity of Plants at Bonn University. There are additional differences between the only stinging nettles and rock nettles – which are only distantly related - apart from their different appearance: Native stinging nettles fortify their needle-like hairs with silica, while their spectacularly flowering South American counterparts employ calcium phosphate for that purpose.

Calcium phosphate has never previously been documented as a structural biomineral in higher plants. “The mineral composition of the stinging hairs is very smilar to that of human or animal teeth“ says Prof. Weigend, who has been researching the highly diverse rock nettles for the past 25 years.

Many scientists previously noted the strikingly rough hairs of this plant group, but nobody ended up researching their chemical composition. The botanists investigated the stinging hairs – built like hypodermic syringes - with their own electron microscope and in collaboration with colleagues from the Steinmann-Institute for Geology, Mineralogy and Paleontology and the Institute of Inorganic Chemistry of Bonn University.

Tips of the stinging hairs structurally similar to reinforced concrete

It could be shown that especially the mechanically highly stressed tips of the hairs are incrusted with calcium phosphate. „This is essentailly a composite material, structurally similar to reinforced concrete“, explains Prof. Weigend. The fibrous cellulose as the typical material of plant cell walls provides the scaffolding and is densely incrusted with tiny crystals of calcium phosphate. The scientist of Bonn University is convinced „This renders the stinging hairs unusually rigid”.

It is still unclear why rock nettles evolved this particular type of biomineralization, while most plants use silica or calcium carbonate as structural biominerals. „A common reason for any given solutions in evolution is that an organism possesses or lacks a particular metabolic pathway“, says Prof. Weigend. However, rock nettles are able metabolize silica and use it as a structural biomineral – side by side with calcium phosphate. It is not currently understood why it is particularly calcium phosphate that is used in the stinging hairs tips, the very substance that the mouthparts of their enemies also consist of. „At present we can only speculate about the adaptive reasons for this. But it seems that rock nettles pay back in kind – a tooth for a tooth” chuckles the biologist of Bonn University.

Bionics: plant trichomes as templates for bone substitutes

Additional research projects are directed towards investigating which other plants may use structural calcium phosphate to face challenges in their natural environment and which biomechanical advantages this material conveys to the plants. The discovery is also of potential relevance for bionic applications. „Surgical bone substitutes have to be highly tissue compatible, cellulose-composite are likely to meet that criterion“, says Prof. Weigend. First attempts at producing artificial cellulose-calcium phosphate composite have been made by other researchers, but so far a natural template was unknown. The cellulose-calcium phosphate composite in rock nettles could be just such a template.

Publication: Hans-Jürgen Ensikat, Thorsten Geisler & Maximilian Weigend: A first report of hydroxylated apatite as structural biomineral in Loasaceae – plants‘ teeth against herbivoren, Scientific Reports, DOI: 10.1038/srep26073

Media contact:

Prof. Dr. Maximilian Weigend
Nees-Institut for Biodiversity of Plants
Bonn University
Tel. ++49-(0)228-732121

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>