Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant enzymes reveal complex secrets

12.03.2012
Biologists are uncovering intricate pathways underlying the chemical modification of a functionally important class of plant molecules
The enzymes needed for producing and chemically modifying functionally important plant molecules called anthocyanins have been identified by a research team led by Kazuki Saito of the RIKEN Plant Science Center, Yokohama.

Anthocyanins belong to a class of organic compounds called flavonoids, which are naturally produced by plants. Defined as secondary metabolites, which have various functions, they are not required directly for development, growth or reproduction. As pigments, they produce some of the colors that flowers need to attract insect pollinators. Others protect against damaging ultraviolet light or defend against plant diseases. The flavonoids secreted from the roots of legumes, such as peas, facilitate interactions with soil microbes that are ultimately beneficial for plant growth. Many of the flavonoids ingested by humans promote good health, or even protect against cancer.

“The biosynthetic pathways that give rise to flavonoids are complex, involving multiple enzymes,” says Saito. “These enzymes are encoded by multi-gene families, making it difficult to elucidate their precise physiological functions.”

Saito’s team set out to identify genes involved in flavonoid biosynthesis in Arabidopsis thaliana, a species often used as an experimental model in plant genetics. The availability of the complete genome sequence of Arabidopsis has allowed the development of ‘omics’-based databases and bio-resources. “Just as the genome contains information about all of the plant’s genes, the proteome and transcriptome contain information about protein and gene expression, respectively, whereas the metabolome signifies metabolites, including secondary metabolites such as flavonoids,” explains Saito.

Taking advantage of this information, and using sophisticated genetic and analytical techniques, Saito and colleagues found that the genes UGT79B1 and UGT84A2, which encode enzymes called UDP-dependent glycosyltransferases (UGTs), clustered with other genes involved in producing anthocyanins. When they deleted the UGT79B1 gene in Arabidopsis plants, they found it drastically reduced anthocyanin production. Further experiments, using genetically engineered UGT79B1, allowed them to uncover the precise biochemical function of the UGT79B1 enzyme, including its substrate specificity.

The UGT84A2 gene was already known to encode an enzyme that attaches glucose to a molecule called sinapic acid—a building block of anthocyanin sinapoylation, which is a chemically modified type of the anthocyanin molecule. Saito and colleagues experiments revealed that the level of sinapoylated anthocyanin was greatly reduced in mutants lacking the UGT84A2 gene.

The researchers were also able to study the evolutionary relationships of the UGT enzymes in various plant species. “Our work provides a ‘roadmap’ for anthocyanin modification routes in Arabidopsis and other plants,” says Saito.


Yonekura-Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., Inoue, E., Kuromori, T., Ito, T., Shinozaki, K., et al. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. The Plant Journal 69, 154–167 (2012).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>