Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant enzymes reveal complex secrets

12.03.2012
Biologists are uncovering intricate pathways underlying the chemical modification of a functionally important class of plant molecules
The enzymes needed for producing and chemically modifying functionally important plant molecules called anthocyanins have been identified by a research team led by Kazuki Saito of the RIKEN Plant Science Center, Yokohama.

Anthocyanins belong to a class of organic compounds called flavonoids, which are naturally produced by plants. Defined as secondary metabolites, which have various functions, they are not required directly for development, growth or reproduction. As pigments, they produce some of the colors that flowers need to attract insect pollinators. Others protect against damaging ultraviolet light or defend against plant diseases. The flavonoids secreted from the roots of legumes, such as peas, facilitate interactions with soil microbes that are ultimately beneficial for plant growth. Many of the flavonoids ingested by humans promote good health, or even protect against cancer.

“The biosynthetic pathways that give rise to flavonoids are complex, involving multiple enzymes,” says Saito. “These enzymes are encoded by multi-gene families, making it difficult to elucidate their precise physiological functions.”

Saito’s team set out to identify genes involved in flavonoid biosynthesis in Arabidopsis thaliana, a species often used as an experimental model in plant genetics. The availability of the complete genome sequence of Arabidopsis has allowed the development of ‘omics’-based databases and bio-resources. “Just as the genome contains information about all of the plant’s genes, the proteome and transcriptome contain information about protein and gene expression, respectively, whereas the metabolome signifies metabolites, including secondary metabolites such as flavonoids,” explains Saito.

Taking advantage of this information, and using sophisticated genetic and analytical techniques, Saito and colleagues found that the genes UGT79B1 and UGT84A2, which encode enzymes called UDP-dependent glycosyltransferases (UGTs), clustered with other genes involved in producing anthocyanins. When they deleted the UGT79B1 gene in Arabidopsis plants, they found it drastically reduced anthocyanin production. Further experiments, using genetically engineered UGT79B1, allowed them to uncover the precise biochemical function of the UGT79B1 enzyme, including its substrate specificity.

The UGT84A2 gene was already known to encode an enzyme that attaches glucose to a molecule called sinapic acid—a building block of anthocyanin sinapoylation, which is a chemically modified type of the anthocyanin molecule. Saito and colleagues experiments revealed that the level of sinapoylated anthocyanin was greatly reduced in mutants lacking the UGT84A2 gene.

The researchers were also able to study the evolutionary relationships of the UGT enzymes in various plant species. “Our work provides a ‘roadmap’ for anthocyanin modification routes in Arabidopsis and other plants,” says Saito.


Yonekura-Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., Inoue, E., Kuromori, T., Ito, T., Shinozaki, K., et al. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. The Plant Journal 69, 154–167 (2012).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>