Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plant enzymes reveal complex secrets

Biologists are uncovering intricate pathways underlying the chemical modification of a functionally important class of plant molecules
The enzymes needed for producing and chemically modifying functionally important plant molecules called anthocyanins have been identified by a research team led by Kazuki Saito of the RIKEN Plant Science Center, Yokohama.

Anthocyanins belong to a class of organic compounds called flavonoids, which are naturally produced by plants. Defined as secondary metabolites, which have various functions, they are not required directly for development, growth or reproduction. As pigments, they produce some of the colors that flowers need to attract insect pollinators. Others protect against damaging ultraviolet light or defend against plant diseases. The flavonoids secreted from the roots of legumes, such as peas, facilitate interactions with soil microbes that are ultimately beneficial for plant growth. Many of the flavonoids ingested by humans promote good health, or even protect against cancer.

“The biosynthetic pathways that give rise to flavonoids are complex, involving multiple enzymes,” says Saito. “These enzymes are encoded by multi-gene families, making it difficult to elucidate their precise physiological functions.”

Saito’s team set out to identify genes involved in flavonoid biosynthesis in Arabidopsis thaliana, a species often used as an experimental model in plant genetics. The availability of the complete genome sequence of Arabidopsis has allowed the development of ‘omics’-based databases and bio-resources. “Just as the genome contains information about all of the plant’s genes, the proteome and transcriptome contain information about protein and gene expression, respectively, whereas the metabolome signifies metabolites, including secondary metabolites such as flavonoids,” explains Saito.

Taking advantage of this information, and using sophisticated genetic and analytical techniques, Saito and colleagues found that the genes UGT79B1 and UGT84A2, which encode enzymes called UDP-dependent glycosyltransferases (UGTs), clustered with other genes involved in producing anthocyanins. When they deleted the UGT79B1 gene in Arabidopsis plants, they found it drastically reduced anthocyanin production. Further experiments, using genetically engineered UGT79B1, allowed them to uncover the precise biochemical function of the UGT79B1 enzyme, including its substrate specificity.

The UGT84A2 gene was already known to encode an enzyme that attaches glucose to a molecule called sinapic acid—a building block of anthocyanin sinapoylation, which is a chemically modified type of the anthocyanin molecule. Saito and colleagues experiments revealed that the level of sinapoylated anthocyanin was greatly reduced in mutants lacking the UGT84A2 gene.

The researchers were also able to study the evolutionary relationships of the UGT enzymes in various plant species. “Our work provides a ‘roadmap’ for anthocyanin modification routes in Arabidopsis and other plants,” says Saito.

Yonekura-Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., Inoue, E., Kuromori, T., Ito, T., Shinozaki, K., et al. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. The Plant Journal 69, 154–167 (2012).

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>