Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plain to See

07.05.2010
New contrast agents for magnetic resonance imaging of tumors

Magnetic resonance imaging (MRI) is primarily a medical imaging technique that is used to visualize different soft tissues within the body. In the field of cancer therapy, a contrast agent is often used to help identify the exact location of tumor cells.

As reported in the European Journal of Organic Chemistry, a team led by Carlos Platas-Iglesias and Teresa Rodríguez-Blas from the Universidade da Coruña has recently designed a new set of receptors that may be useful in the design of specific MRI contrast agents for the recognition of certain compounds on the surfaces of tumor cells.

Specific contrast agents that are able to report on their biological environments through molecular recognition processes are highly desired. A specific MRI contrast agent could take advantage of these processes to respond to certain functional groups that can be found in abundance in the diseased tissue. Sialic acid, for instance, is considered to be a tumor marker, because it is known to be over-expressed on the surfaces of tumor cells. An MRI contrast agent specific for sialic acid should bind selectively with the acid in preference to other sugar residues and to saccharides such as glucose and fructose, which occur in relatively high concentrations in the blood.

... more about:
»CHEMISTRY »MRI »Organic »contrast agent »tumor cells

Platas-Iglesias and Rodríguez-Blas reasoned that a suitable receptor for sialic acid recognition might be based on (thio)urea units containing boronic acid functions, as both of these functionalities show promise as recognition moieties. (Thio)Urea-based receptors can establish strong interactions with anions such as carboxylates, which are present in sialic acids, and boronic acids are able to form reversible complexes with 1,2- and 1,3-diol units present in saccharides.

To test their receptors, the authors monitored their binding to Neu5Ac, which is the most common member of the sialic acid family; it also plays an important role in cellular recognition processes. The receptors were found to bind to Neu5Ac, and importantly, much weaker interaction between the receptors and other saccharides studied was observed. The selectivity was found to occur by cooperative two-site binding of Neu5Ac through (1) interaction at the boronic acid function of the receptor and (2) interaction between the thiourea moiety and the carboxylate group of Neu5Ac. The set of receptors have thus been shown to interact selectively with targets over-expressed on the surface of cancer cells, which makes them promising synthons for the design of specific contrast agents for MRI of tumors.

Author: Carlos Platas-Iglesias, Universidade da Coruña (Spain), mailto:cplatas@udc.es

Title: Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its cis-Diol and Carboxylate Functions

European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201000186

Carlos Platas-Iglesias | Wiley-VCH
Further information:
http://www.eurjoc.org
http://www.wiley-vch.de

Further reports about: CHEMISTRY MRI Organic contrast agent tumor cells

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>