Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plain to See

07.05.2010
New contrast agents for magnetic resonance imaging of tumors

Magnetic resonance imaging (MRI) is primarily a medical imaging technique that is used to visualize different soft tissues within the body. In the field of cancer therapy, a contrast agent is often used to help identify the exact location of tumor cells.

As reported in the European Journal of Organic Chemistry, a team led by Carlos Platas-Iglesias and Teresa Rodríguez-Blas from the Universidade da Coruña has recently designed a new set of receptors that may be useful in the design of specific MRI contrast agents for the recognition of certain compounds on the surfaces of tumor cells.

Specific contrast agents that are able to report on their biological environments through molecular recognition processes are highly desired. A specific MRI contrast agent could take advantage of these processes to respond to certain functional groups that can be found in abundance in the diseased tissue. Sialic acid, for instance, is considered to be a tumor marker, because it is known to be over-expressed on the surfaces of tumor cells. An MRI contrast agent specific for sialic acid should bind selectively with the acid in preference to other sugar residues and to saccharides such as glucose and fructose, which occur in relatively high concentrations in the blood.

... more about:
»CHEMISTRY »MRI »Organic »contrast agent »tumor cells

Platas-Iglesias and Rodríguez-Blas reasoned that a suitable receptor for sialic acid recognition might be based on (thio)urea units containing boronic acid functions, as both of these functionalities show promise as recognition moieties. (Thio)Urea-based receptors can establish strong interactions with anions such as carboxylates, which are present in sialic acids, and boronic acids are able to form reversible complexes with 1,2- and 1,3-diol units present in saccharides.

To test their receptors, the authors monitored their binding to Neu5Ac, which is the most common member of the sialic acid family; it also plays an important role in cellular recognition processes. The receptors were found to bind to Neu5Ac, and importantly, much weaker interaction between the receptors and other saccharides studied was observed. The selectivity was found to occur by cooperative two-site binding of Neu5Ac through (1) interaction at the boronic acid function of the receptor and (2) interaction between the thiourea moiety and the carboxylate group of Neu5Ac. The set of receptors have thus been shown to interact selectively with targets over-expressed on the surface of cancer cells, which makes them promising synthons for the design of specific contrast agents for MRI of tumors.

Author: Carlos Platas-Iglesias, Universidade da Coruña (Spain), mailto:cplatas@udc.es

Title: Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its cis-Diol and Carboxylate Functions

European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201000186

Carlos Platas-Iglesias | Wiley-VCH
Further information:
http://www.eurjoc.org
http://www.wiley-vch.de

Further reports about: CHEMISTRY MRI Organic contrast agent tumor cells

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>