Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plain to See

07.05.2010
New contrast agents for magnetic resonance imaging of tumors

Magnetic resonance imaging (MRI) is primarily a medical imaging technique that is used to visualize different soft tissues within the body. In the field of cancer therapy, a contrast agent is often used to help identify the exact location of tumor cells.

As reported in the European Journal of Organic Chemistry, a team led by Carlos Platas-Iglesias and Teresa Rodríguez-Blas from the Universidade da Coruña has recently designed a new set of receptors that may be useful in the design of specific MRI contrast agents for the recognition of certain compounds on the surfaces of tumor cells.

Specific contrast agents that are able to report on their biological environments through molecular recognition processes are highly desired. A specific MRI contrast agent could take advantage of these processes to respond to certain functional groups that can be found in abundance in the diseased tissue. Sialic acid, for instance, is considered to be a tumor marker, because it is known to be over-expressed on the surfaces of tumor cells. An MRI contrast agent specific for sialic acid should bind selectively with the acid in preference to other sugar residues and to saccharides such as glucose and fructose, which occur in relatively high concentrations in the blood.

... more about:
»CHEMISTRY »MRI »Organic »contrast agent »tumor cells

Platas-Iglesias and Rodríguez-Blas reasoned that a suitable receptor for sialic acid recognition might be based on (thio)urea units containing boronic acid functions, as both of these functionalities show promise as recognition moieties. (Thio)Urea-based receptors can establish strong interactions with anions such as carboxylates, which are present in sialic acids, and boronic acids are able to form reversible complexes with 1,2- and 1,3-diol units present in saccharides.

To test their receptors, the authors monitored their binding to Neu5Ac, which is the most common member of the sialic acid family; it also plays an important role in cellular recognition processes. The receptors were found to bind to Neu5Ac, and importantly, much weaker interaction between the receptors and other saccharides studied was observed. The selectivity was found to occur by cooperative two-site binding of Neu5Ac through (1) interaction at the boronic acid function of the receptor and (2) interaction between the thiourea moiety and the carboxylate group of Neu5Ac. The set of receptors have thus been shown to interact selectively with targets over-expressed on the surface of cancer cells, which makes them promising synthons for the design of specific contrast agents for MRI of tumors.

Author: Carlos Platas-Iglesias, Universidade da Coruña (Spain), mailto:cplatas@udc.es

Title: Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its cis-Diol and Carboxylate Functions

European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201000186

Carlos Platas-Iglesias | Wiley-VCH
Further information:
http://www.eurjoc.org
http://www.wiley-vch.de

Further reports about: CHEMISTRY MRI Organic contrast agent tumor cells

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>