Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Placenta-derived stem cells may help sufferers of lung diseases

29.07.2009
Placental stem cells and lung disease

An Italian research team, publishing in the current issue of Cell Transplantation (18:4), which is now available on-line without charge at http://www.ingentaconnect.com/content/cog/ct, has found that stem cells derived from human placenta may ultimately play a role in the treatment of lung diseases, such as pulmonary fibrosis and fibrotic diseases caused by tuberculosis, chemical exposure, radiation or pathogens. These diseases can ultimately lead to loss of normal lung tissue and organ failure. No known therapy effectively reverses or stops the fibrotic process.

Placenta-derived stem cells are known to be able to engraft in solid organs, including the lungs. Human term placenta stem cells also demonstrate characteristics of high plasticity and low immunogenicity.

"The potential application of fetal membrane-derived cells as a therapeutic tool for disorders characterized by inflammation and fibrosis is supported in previous studies," says Dr. Ornella Parolini, the study's lead author. "In line with the hypothesis that cells derived from the amniotic membrane have immunomodulatory properties and have been used as an anti-inflammatory agent, we set out to evaluate the effects of fetal membrane-derived cell transplantation in chemically-treated (bleomycin) mice."

According to Dr. Parolini, cells delivered via intra-peritoneal transplant, regardless of the cells being allogenic or xenogenic (host's own cells or from another individual respectively), the procedure resulted in a significant anti-fibrotic effect on the lab animals. A "consistent" reduction in lung fibrosis, says Dr. Parolini, "provides convincing proof" that placenta-derived cells do confer benefits for bleomycin-induced lung injury. While the severity of inflammation did not show an overall reduction, there was a marked reduction in neutrophil (white blood cell) infiltration after both xeno-and-allo-transplantation.

"It is worth noting," says Dr. Parolini," that the presence of neutrophils is associated with poor prognosis for several lung diseases. However, the mechanism by which placenta-derived cells might affect infiltration by neutrophils is not known."

The researchers speculated that these cells may produce soluble factors that induce anti-inflammatory effects.

"Our findings suggest that fetal membrane-derived cells may prove useful for cell therapy of fibrotic diseases in the future," concludes Dr. Parolini.

Dr. Cesar Borlongan, of the University of South Florida and associate editor for Cell Transplantation, notes that the present study adds an important application of placenta cells, indicating their therapeutic effects in lung diseases. The cells' ability to reduce neutrophils possibly via secreted anti-inflammatory factors implies their use either as autografts or allografts, thereby increasing the numbers of the target patient population.

Contact: Ornella Parolini, PhD, Centro di Ricerca E. Menni, Fondazione Poliambulanza-Instituto Ospelaliero, Via Bissolati 57, 1-25124 Brescia, Italy. Tel: 390302455754 email: ornella.parolini@tin.it or parolini-ornella@poliambulanza.it

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, Florida Science Communications.

Ornella Parolini | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct

Further reports about: Medicine Transplantation cell death lung diseases stem cells

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>