Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Placenta-derived stem cells may help sufferers of lung diseases

29.07.2009
Placental stem cells and lung disease

An Italian research team, publishing in the current issue of Cell Transplantation (18:4), which is now available on-line without charge at http://www.ingentaconnect.com/content/cog/ct, has found that stem cells derived from human placenta may ultimately play a role in the treatment of lung diseases, such as pulmonary fibrosis and fibrotic diseases caused by tuberculosis, chemical exposure, radiation or pathogens. These diseases can ultimately lead to loss of normal lung tissue and organ failure. No known therapy effectively reverses or stops the fibrotic process.

Placenta-derived stem cells are known to be able to engraft in solid organs, including the lungs. Human term placenta stem cells also demonstrate characteristics of high plasticity and low immunogenicity.

"The potential application of fetal membrane-derived cells as a therapeutic tool for disorders characterized by inflammation and fibrosis is supported in previous studies," says Dr. Ornella Parolini, the study's lead author. "In line with the hypothesis that cells derived from the amniotic membrane have immunomodulatory properties and have been used as an anti-inflammatory agent, we set out to evaluate the effects of fetal membrane-derived cell transplantation in chemically-treated (bleomycin) mice."

According to Dr. Parolini, cells delivered via intra-peritoneal transplant, regardless of the cells being allogenic or xenogenic (host's own cells or from another individual respectively), the procedure resulted in a significant anti-fibrotic effect on the lab animals. A "consistent" reduction in lung fibrosis, says Dr. Parolini, "provides convincing proof" that placenta-derived cells do confer benefits for bleomycin-induced lung injury. While the severity of inflammation did not show an overall reduction, there was a marked reduction in neutrophil (white blood cell) infiltration after both xeno-and-allo-transplantation.

"It is worth noting," says Dr. Parolini," that the presence of neutrophils is associated with poor prognosis for several lung diseases. However, the mechanism by which placenta-derived cells might affect infiltration by neutrophils is not known."

The researchers speculated that these cells may produce soluble factors that induce anti-inflammatory effects.

"Our findings suggest that fetal membrane-derived cells may prove useful for cell therapy of fibrotic diseases in the future," concludes Dr. Parolini.

Dr. Cesar Borlongan, of the University of South Florida and associate editor for Cell Transplantation, notes that the present study adds an important application of placenta cells, indicating their therapeutic effects in lung diseases. The cells' ability to reduce neutrophils possibly via secreted anti-inflammatory factors implies their use either as autografts or allografts, thereby increasing the numbers of the target patient population.

Contact: Ornella Parolini, PhD, Centro di Ricerca E. Menni, Fondazione Poliambulanza-Instituto Ospelaliero, Via Bissolati 57, 1-25124 Brescia, Italy. Tel: 390302455754 email: ornella.parolini@tin.it or parolini-ornella@poliambulanza.it

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, Florida Science Communications.

Ornella Parolini | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct

Further reports about: Medicine Transplantation cell death lung diseases stem cells

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>