Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers describe molecular '2-step' leading to protein clumps of Huntington's disease

10.03.2009
In a paper published in the early online version of Nature Structural and Molecular Biology, researchers at the University of Pittsburgh School of Medicine deconstruct the first steps in an intricate molecular dance that might lead to the formation of pathogenic protein clumps in Huntington's disease, and possibly other movement-related neurological disorders.

Huntington's is one of 10 diseases in which a certain protein, different for each disease, contains polyglutamine, a stretch of repeating blocks of the amino acid glutamine, explained Ronald Wetzel, Ph.D., professor in the Department of Structural Biology and member of the Pittsburgh Institute for Neurodegenerative Diseases at the University of Pittsburgh School of Medicine. The affected protein in Huntington's disease is called huntingtin.

Most people have a huntingtin protein whose polyglutamine segment contains 20 or so glutamines, and even a polyglutamine with as many as 35 repeats may not cause Huntington's symptoms. But the risk of developing Huntington's disease rises sharply in individuals whose polyglutamine sequences are only slightly larger. A block of 40 repeats, for example, is associated with a very high likelihood of having the disease.

"To a protein chemist, this is a fascinating situation," Dr. Wetzel said. "Polyglutamine doesn't seem to play a sophisticated role in these proteins, and it doesn't have a defined structure. Yet by changing its length to only a very slight extent, it takes on some new physical properties that somehow initiate diseases."

One consequence of the lengthening is protein aggregation, or clumping, a feature that consistently appears in brain cells of patients who have one of these neurodegenerative diseases. Many research groups, including Dr. Wetzel's, study how polyglutamine expansion alters the huntingtin protein's behavior.

In its most recent studies, the Pitt team worked out the details of how the aggregation behavior of huntingtin depends, in a surprisingly intricate way, on the neighboring segments of amino acid sequence flanking the polyglutamine.

They found that longer polyglutamine sequences have the ability to disrupt the structure of a neighboring region, 17 amino acids long, at the beginning of the protein known as the N-terminus. That sets the stage for new physical interactions with the rest of the huntingtin protein that drive it to aggregate.

"If the N-terminus is not there, huntingtin makes clumps very slowly, even if the polyglutamine stretch is rather long," Dr. Wetzel noted. "When the N-terminus is disrupted by its polyglutamine neighbor, it takes a lead role in the aggregation process, with the polyglutamine then following to consolidate and stabilize the clumps – a kind of 'aggregation two-step'."

The choreography might be similar in other polyglutamine diseases, meaning physical disruption of neighboring regions may influence the tendency for the protein to clump, he added. More research is needed to establish whether the aggregates cause disease or are merely a marker for it, and to try to develop treatments that can redirect the protein dance or perhaps halt it entirely. "For those of us interested in developing therapeutics," Dr. Wetzel notes, "the strong role played by the N-terminus in initiating aggregation gives us another possible molecular target."

Huntington's disease is an inherited disease in which progressive degeneration of certain brain neurons causes uncontrolled writhing, twisting and jerking movements, and cognitive and psychiatric problems. It was once called Huntington's "chorea", from a Greek word for dance.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>