Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers describe molecular '2-step' leading to protein clumps of Huntington's disease

10.03.2009
In a paper published in the early online version of Nature Structural and Molecular Biology, researchers at the University of Pittsburgh School of Medicine deconstruct the first steps in an intricate molecular dance that might lead to the formation of pathogenic protein clumps in Huntington's disease, and possibly other movement-related neurological disorders.

Huntington's is one of 10 diseases in which a certain protein, different for each disease, contains polyglutamine, a stretch of repeating blocks of the amino acid glutamine, explained Ronald Wetzel, Ph.D., professor in the Department of Structural Biology and member of the Pittsburgh Institute for Neurodegenerative Diseases at the University of Pittsburgh School of Medicine. The affected protein in Huntington's disease is called huntingtin.

Most people have a huntingtin protein whose polyglutamine segment contains 20 or so glutamines, and even a polyglutamine with as many as 35 repeats may not cause Huntington's symptoms. But the risk of developing Huntington's disease rises sharply in individuals whose polyglutamine sequences are only slightly larger. A block of 40 repeats, for example, is associated with a very high likelihood of having the disease.

"To a protein chemist, this is a fascinating situation," Dr. Wetzel said. "Polyglutamine doesn't seem to play a sophisticated role in these proteins, and it doesn't have a defined structure. Yet by changing its length to only a very slight extent, it takes on some new physical properties that somehow initiate diseases."

One consequence of the lengthening is protein aggregation, or clumping, a feature that consistently appears in brain cells of patients who have one of these neurodegenerative diseases. Many research groups, including Dr. Wetzel's, study how polyglutamine expansion alters the huntingtin protein's behavior.

In its most recent studies, the Pitt team worked out the details of how the aggregation behavior of huntingtin depends, in a surprisingly intricate way, on the neighboring segments of amino acid sequence flanking the polyglutamine.

They found that longer polyglutamine sequences have the ability to disrupt the structure of a neighboring region, 17 amino acids long, at the beginning of the protein known as the N-terminus. That sets the stage for new physical interactions with the rest of the huntingtin protein that drive it to aggregate.

"If the N-terminus is not there, huntingtin makes clumps very slowly, even if the polyglutamine stretch is rather long," Dr. Wetzel noted. "When the N-terminus is disrupted by its polyglutamine neighbor, it takes a lead role in the aggregation process, with the polyglutamine then following to consolidate and stabilize the clumps – a kind of 'aggregation two-step'."

The choreography might be similar in other polyglutamine diseases, meaning physical disruption of neighboring regions may influence the tendency for the protein to clump, he added. More research is needed to establish whether the aggregates cause disease or are merely a marker for it, and to try to develop treatments that can redirect the protein dance or perhaps halt it entirely. "For those of us interested in developing therapeutics," Dr. Wetzel notes, "the strong role played by the N-terminus in initiating aggregation gives us another possible molecular target."

Huntington's disease is an inherited disease in which progressive degeneration of certain brain neurons causes uncontrolled writhing, twisting and jerking movements, and cognitive and psychiatric problems. It was once called Huntington's "chorea", from a Greek word for dance.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>