Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt Chemists Demonstrate Nanoscale Alloys So Bright They Could Have Potential Medical Applications

15.05.2013
“Think about a particle that will not only help researchers detect cancer sooner but be used to treat the tumor, too.”
Alloys like bronze and steel have been transformational for centuries, yielding top-of-the-line machines necessary for industry. As scientists move toward nanotechnology, however, the focus has shifted toward creating alloys at the nanometer scale—producing materials with properties unlike their predecessors.

Now, research at the University of Pittsburgh demonstrates that nanometer-scale alloys possess the ability to emit light so bright they could have potential applications in medicine. The findings have been published in the Journal of the American Chemical Society.

“We demonstrate alloys that are some of the brightest, near-infrared-light-emitting species known to date. They are 100 times brighter than what’s being used now,” said Jill Millstone, principal investigator of the study and assistant professor of chemistry in Pitt’s Kenneth P. Dietrich School of Arts and Sciences. “Think about a particle that will not only help researchers detect cancer sooner but be used to treat the tumor, too.”

In the paper, Millstone presents alloys with drastically different properties than before—including near-infrared (NIR) light emission—depending on their size, shape, and surface chemistry. NIR is an important region of the light spectrum and is integral to technology found in science and medical settings, said Millstone. She uses a laser pointer as an example.

“If you put your finger over a red laser [which is close to the NIR light region of the spectrum], you’ll see the red light shine through. However, if you do the same with a green laser [light in the visible region of the spectrum], your finger will completely block it,” said Millstone. “This example shows how the body can absorb visible light well but doesn’t absorb red light as well. That means that using NIR emitters to visualize cells and, ultimately parts of the body, is promising for minimally invasive diagnostics.”

In addition, Millstone’s demonstration is unique in that she was able to show—for the first time—a continuously tunable composition for nanoparticle alloys; this means the ratio of materials can be altered based on need. In traditional metallurgical studies, materials such as steels can be highly tailored toward the application, say, for an airplane wing versus a cooking pot. However, alloys at the nanoscale follow different rules, says Millstone. Because the nanoparticles are so small, the components often don’t stay together and instead quickly separate, like oil and vinegar. In her paper, Millstone describes using small organic molecules to “glue” an alloy in place, so that the two components stay mixed. This strategy led to the discovery of NIR luminescence and also paves the way for other types of nanoparticle alloys that are useful not only in imaging, but in applications like catalysis for the industrial-scale conversion of fossil fuels into fine chemicals.

Millstone says that taken together these observations provide a new platform to investigate the structural origins of small metal nanoparticles’ photoluminescence and of alloy formation in general. She believes these studies should lead directly to applications in such areas of national need as health and energy.

The paper, “Photoluminescent Gold-Copper Nanoparticle Alloys with Composition-Tunable Near-Infrared Emission,” first appeared online April 3 and later in print April 10 in JACS (Journal of the American Chemical Society). Funding was provided by the University’s Central Research Development Fund and administered by Pitt’s Office of Research and University Research Council.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>