Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt Chemists Demonstrate Nanoscale Alloys So Bright They Could Have Potential Medical Applications

15.05.2013
“Think about a particle that will not only help researchers detect cancer sooner but be used to treat the tumor, too.”
Alloys like bronze and steel have been transformational for centuries, yielding top-of-the-line machines necessary for industry. As scientists move toward nanotechnology, however, the focus has shifted toward creating alloys at the nanometer scale—producing materials with properties unlike their predecessors.

Now, research at the University of Pittsburgh demonstrates that nanometer-scale alloys possess the ability to emit light so bright they could have potential applications in medicine. The findings have been published in the Journal of the American Chemical Society.

“We demonstrate alloys that are some of the brightest, near-infrared-light-emitting species known to date. They are 100 times brighter than what’s being used now,” said Jill Millstone, principal investigator of the study and assistant professor of chemistry in Pitt’s Kenneth P. Dietrich School of Arts and Sciences. “Think about a particle that will not only help researchers detect cancer sooner but be used to treat the tumor, too.”

In the paper, Millstone presents alloys with drastically different properties than before—including near-infrared (NIR) light emission—depending on their size, shape, and surface chemistry. NIR is an important region of the light spectrum and is integral to technology found in science and medical settings, said Millstone. She uses a laser pointer as an example.

“If you put your finger over a red laser [which is close to the NIR light region of the spectrum], you’ll see the red light shine through. However, if you do the same with a green laser [light in the visible region of the spectrum], your finger will completely block it,” said Millstone. “This example shows how the body can absorb visible light well but doesn’t absorb red light as well. That means that using NIR emitters to visualize cells and, ultimately parts of the body, is promising for minimally invasive diagnostics.”

In addition, Millstone’s demonstration is unique in that she was able to show—for the first time—a continuously tunable composition for nanoparticle alloys; this means the ratio of materials can be altered based on need. In traditional metallurgical studies, materials such as steels can be highly tailored toward the application, say, for an airplane wing versus a cooking pot. However, alloys at the nanoscale follow different rules, says Millstone. Because the nanoparticles are so small, the components often don’t stay together and instead quickly separate, like oil and vinegar. In her paper, Millstone describes using small organic molecules to “glue” an alloy in place, so that the two components stay mixed. This strategy led to the discovery of NIR luminescence and also paves the way for other types of nanoparticle alloys that are useful not only in imaging, but in applications like catalysis for the industrial-scale conversion of fossil fuels into fine chemicals.

Millstone says that taken together these observations provide a new platform to investigate the structural origins of small metal nanoparticles’ photoluminescence and of alloy formation in general. She believes these studies should lead directly to applications in such areas of national need as health and energy.

The paper, “Photoluminescent Gold-Copper Nanoparticle Alloys with Composition-Tunable Near-Infrared Emission,” first appeared online April 3 and later in print April 10 in JACS (Journal of the American Chemical Society). Funding was provided by the University’s Central Research Development Fund and administered by Pitt’s Office of Research and University Research Council.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>