Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt Chemists Demonstrate Nanoscale Alloys So Bright They Could Have Potential Medical Applications

15.05.2013
“Think about a particle that will not only help researchers detect cancer sooner but be used to treat the tumor, too.”
Alloys like bronze and steel have been transformational for centuries, yielding top-of-the-line machines necessary for industry. As scientists move toward nanotechnology, however, the focus has shifted toward creating alloys at the nanometer scale—producing materials with properties unlike their predecessors.

Now, research at the University of Pittsburgh demonstrates that nanometer-scale alloys possess the ability to emit light so bright they could have potential applications in medicine. The findings have been published in the Journal of the American Chemical Society.

“We demonstrate alloys that are some of the brightest, near-infrared-light-emitting species known to date. They are 100 times brighter than what’s being used now,” said Jill Millstone, principal investigator of the study and assistant professor of chemistry in Pitt’s Kenneth P. Dietrich School of Arts and Sciences. “Think about a particle that will not only help researchers detect cancer sooner but be used to treat the tumor, too.”

In the paper, Millstone presents alloys with drastically different properties than before—including near-infrared (NIR) light emission—depending on their size, shape, and surface chemistry. NIR is an important region of the light spectrum and is integral to technology found in science and medical settings, said Millstone. She uses a laser pointer as an example.

“If you put your finger over a red laser [which is close to the NIR light region of the spectrum], you’ll see the red light shine through. However, if you do the same with a green laser [light in the visible region of the spectrum], your finger will completely block it,” said Millstone. “This example shows how the body can absorb visible light well but doesn’t absorb red light as well. That means that using NIR emitters to visualize cells and, ultimately parts of the body, is promising for minimally invasive diagnostics.”

In addition, Millstone’s demonstration is unique in that she was able to show—for the first time—a continuously tunable composition for nanoparticle alloys; this means the ratio of materials can be altered based on need. In traditional metallurgical studies, materials such as steels can be highly tailored toward the application, say, for an airplane wing versus a cooking pot. However, alloys at the nanoscale follow different rules, says Millstone. Because the nanoparticles are so small, the components often don’t stay together and instead quickly separate, like oil and vinegar. In her paper, Millstone describes using small organic molecules to “glue” an alloy in place, so that the two components stay mixed. This strategy led to the discovery of NIR luminescence and also paves the way for other types of nanoparticle alloys that are useful not only in imaging, but in applications like catalysis for the industrial-scale conversion of fossil fuels into fine chemicals.

Millstone says that taken together these observations provide a new platform to investigate the structural origins of small metal nanoparticles’ photoluminescence and of alloy formation in general. She believes these studies should lead directly to applications in such areas of national need as health and energy.

The paper, “Photoluminescent Gold-Copper Nanoparticle Alloys with Composition-Tunable Near-Infrared Emission,” first appeared online April 3 and later in print April 10 in JACS (Journal of the American Chemical Society). Funding was provided by the University’s Central Research Development Fund and administered by Pitt’s Office of Research and University Research Council.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>