Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinpointing susceptibility to knee arthritis

13.10.2008
Molecular geneticists in Japan and China have identified a previously unknown gene associated with susceptibility to osteoarthritis, a common disease affecting knee and hip joints through abnormal wearing of the cushioning cartilage.

Identification of a previously unknown gene linked to knee arthritis provides new therapeutic target

Molecular geneticists in Japan and China have identified a previously unknown gene associated with susceptibility to osteoarthritis (OA), a common disease affecting the functioning of knee and hip joints through abnormal wearing of the cushioning cartilage. The researchers have named the newly identified gene DVWA (double von Willebrand factor A) and suggest that it codes for a protein involved in the formation of cartilage. The discovery could lead to genetic diagnosis of some forms of knee OA, and possible development of a therapeutic drug.

More than one adult in 10 over the age of 50 suffers from OA, a painful condition that restricts movement. Genetic susceptibility to OA is largely a mystery, although a few genes are already known to be associated with it.

In a recent paper in Nature Genetics (1), researchers from RIKEN’s Center for Genomic Medicine in Tokyo and Yokohama together with colleagues from several medical schools describe how they screened about 100,000 point mutations or single nucleotide polymorphisms (SNPs) from the Japanese SNP database to find the previously unknown gene.

Initially the researchers screened the genomes of 94 Japanese sufferers of knee OA and about 650 controls against the whole set of SNPs. About 2% of these SNPs were significantly correlated with OA. These were then tested against the genomes of an independent group of about 900 Japanese OA patients and 1,100 controls, and a third group of more than 400 Han Chinese OA sufferers and a similar number of controls. Several of the SNPs significantly associated with knee OA occurred in the DVWA gene. This association was independent of age, body mass index and sex.

The researchers determined in the laboratory that the DVWA protein binds to a protein building block of microtubules, â-tubulin. Microtubules are structural components of cells, which are associated with internal transport and have also been reported to play a role in the differentiation of cartilage-forming cells. Two of the SNPs of DVWA significantly weaken its protein product’s capacity to bind to â-tubulin.

“We are now planning to check the replication of our results in other ethnic groups to examine whether DVWA is a ‘global’ gene or not,” says Shiro Ikegawa, who led the research project. “And we also intend to clarify our proposed molecular mechanism as to how SNPs of the gene make people susceptible to OA.”

1. Miyamoto, Y., Shi, D., Nakajima, M., Ozaki, K., Sudo, A., Kotani, A., Uchida, A., Tanaka, T., Fukui, N., Tsunoda, T., Takahashi, A., Nakamura, Y., Jiang, Q. & Ikegawa, S. Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nature Genetics 40, 994–998 (2008).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/557/
http://www.researchsea.com

Further reports about: DVWA DVWA protein Genetic Osteoarthritis SNP associated knee arthritis susceptibility

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>