Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Piece Found in the Puzzle of Epigenetics

18.06.2009
Researchers of Helmholtz Zentrum München elucidate mechanism of the fine regulation of RNA synthesis

A team of scientists led by Professor Dirk Eick of Helmholtz Zentrum München has identified the enzyme TFIIH kinase as an important factor in the epigenetic regulation of the cell nucleus enzyme RNA polymerase II. The findings, recently published in the renowned journal Molecular Cell, constitute a further building block for understanding the pathomechanisms of cancer and other diseases.

For many years scientists have known that the numerous biological functions of an organism are not regulated solely by the DNA sequence of its genes: Superordinate regulatory mechanisms exist that contribute to determining the fate of genes. Although they are not anchored in the DNA, they can even be passed on to subsequent generations to a certain extent. Intensive research in recent years has shown that these mechanisms – bundled under the term epigenetics, are very multifaceted and complex.

Professor Dirk Eick and staff members of the Institute of Clinical Molecular Biology and Tumor Genetics of Helmholtz Zentrum München, together with colleagues from the University of Wisconsin-Madison, Wisconsin, USA, have now identified another piece in the puzzle of epigenetics: They showed that the enzyme TFIIH kinase is involved in epigenetic regulation.

The scientists were interested in the fine regulation of the cell nucleus enzyme RNA polymerase II. This transcribes the genetic information of the genetic substance DNA into messenger RNA - mRNA for short – which in turn is the basis for protein synthesis. At the same time RNA polymerase II is also responsible for the production of other kinds of RNA molecules, the so-called snRNA, which are not translated into proteins but take on other tasks. In prior research Eick and his colleagues had observed that a certain region of the RNA polymerase II enzyme – the carboxy-terminal domain – is involved in deciding which kinds of RNA are formed. In humans this domain consists of 52 repeats of a sequence of seven amino acids. For RNA synthesis the determining factor is whether and how specific amino acids of this region are modified biochemically. Thus, it is absolutely essential for the synthesis of snRNA that the amino acid serine at position 7 of this repeat sequence is provided with an additional phosphate group. If this is lacking, mRNA will be produced, but not any snRNA. The reason for that is presumably that this phosphorylation enables the interaction with a protein complex – the so-called integrator complex – which is necessary for snRNA formation. In other words, the modification of the enzyme RNA polymerase II at defined positions regulates whether this enzyme can produce certain kinds of RNA molecules or not.

In their latest research, the scientists led by Dirk Eick showed that the enzyme TFIIH kinase is responsible for the selective phosphorylation of RNA polymerase II. “With these findings another building block has been identified that plays a key role in epigenetic regulation by means of RNA polymerase II,” Professor Eick said. “This is of great significance because knowledge of epigenetic mechanisms is necessary in order to better understand cancer and other diseases and to be able to provide more targeted treatment.”

Original publication:

Md. Sohail Akhtar, Martin Heidemann, Joshua R. Tietjen, David W. Zhang, Rob D. Chapman, Dirk Eick, Aseem Z. Ansari (2009): TFIIH Kinase Places Bivalent Marks on the Carboxy-Terminal Domain of RNA Polymerase II. Molecular Cell 34, 387–393 (Online-Publikation:I DOI 10.1016/j.molcel.2009.04.016)

The Institute of Clinical Molecular Biology and Tumor Genetics of Helmholtz Zentrum München focuses on genetic alterations in the cell that arise during malignant transformation and are causally related to the development into a tumor cell. Besides gaining new insights for basic research, the main aim is to make advances in the therapy of malignant diseases and to develop vectors for gene therapy.

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1680 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 15 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

Sven Winkler | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>