Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

pH Sensor for Cell Organelles

14.12.2012
pH-dependent conformation change controls energy transfer in nanocrystal sensors

Acidity (pH) and its changes play an important role in many physiological processes, including protein folding, and can act as indicators of cancer. In the journal Angewandte Chemie, American researchers have now introduced an unconventional pH sensor that makes it possible to monitor changes in pH values in living cells over longer periods of time, with previously unobtainable spatial resolution. This is possible through the combination of fluorescent nanocrystals with mobile molecular “arms” that can fold or unfold depending on the pH of their environment.



Endosomes, cell organelles that play a role in transport within cells, experience a considerable drop in their pH value as they mature. This was observed by the team working with Moungi G. Bawendi at the Massachusetts Institute of Technology (MIT) in Cambridge (USA) by using a new nanoscopic pH sensor and a fluorescence microscope.

The secret to their success lies in the unconventional design of their sensor: A mobile molecular “arm” connects a green fluorescent nanocrystal to a red fluorescent dye. The nanocrystals are particles of semiconductor materials that easily transfer the light energy they absorb to fluorescent dyes through a radiation-free mechanism (fluorescence resonance energy transfer, or FRET). This causes the dye to fluoresce—as long as both of the FRET partners are close enough to each other.

The distance between the nanocrystal and the dye is controlled by folding and unfolding of the molecular arm on the nano pH sensor—and this motion is pH-dependent. The arm consists of one piece of double-stranded and one piece of single-stranded DNA. As the concentration of H+ ions increases, so does the tendency to form a “triple strand”, in which the single strand fits into the groove of the double strand, causing the arm to fold. This “arm movement” takes place in the physiologically important range around pH 7 and is very sensitive to the slightest change.

At higher pH values, the arm is stretched out and the FRET partners are too far away from each other for energy transfer to occur. The nanocrystal emits green fluorescence and the dye does not fluoresce. As the pH gets lower, the arm folds enough to allow FRET energy transfer. The green fluorescence of the nanocrystal decreases and the dye begins to glow red. Because this technique measures the ratio of green to red fluorescence instead of an absolute value, variations in intensity make no difference. The sensor thus has an internal reference.

In this type of sensor, the actual “pH tester” and the optical signaling device are two separate components. By replacing the pH tester with a molecular arm that responds to a different analyte it should be possible to use the same principle and the same optical signaling device to build sensors for other target molecules.

Nanocrystal fluorophores have caused much excitement in several fields because of their attractive optical properties. Nanocrystals offer superior properties compared to traditional molecular fluorophores, in particular in biology, where they can help reveal the inner workings of the cell. However, converting these new nanomaterials into fluorescent sensors has proven difficult. The concept of harnessing a molecular conformational change to create a sensor is new for nanocrystal sensors and could prove a general solution to the problem of making sensors from nanocrystals.

Author: Moungi G. Bawendi, Massachusetts Institute of Technology, Cambridge (USA), http://nanocluster.mit.edu/people.php

Title: Conformational Control of Energy Transfer: A Mechanism for Biocompatible Nanocrystal-Based Sensors

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201207181

Moungi G. Bawendi | Angewandte Chemie
Further information:
http://nanocluster.mit.edu/people.php
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>