Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

pH measurements: How to see the real face of electrochemistry and corrosion?

19.12.2012
For several decades antimony electrodes have been used to measure the acidity/basicity – and so to determine the pH value. Unfortunately, they allow for measuring pH changes of solutions only at a certain distance from electrodes or corroding metals.

Researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences developed a method for producing antimony microelectrodes that allow for measuring pH changes just over the metal surface, at which chemical reactions take place.

Changes in solution acidity/basicity provide important information on the nature of chemical reactions occurring at metal surfaces. These data are particularly important for a better understanding of electrochemical and corrosion processes. Unfortunately, the measurement methods used to date in the research laboratories did not allow for observing the changes with sufficient precision.

The information on basicity or acidity is contained in the well-known and commonly used pH value. pH for pure (inert) water is equal to 7, for hydrochloric acid – 0, and for sodium hydroxide (one of the strongest bases) – 14.

"Until now we have not been able to measure pH changes at places where the most interesting things occur: at the very metal surface. The measurements had to be carried out at a certain distance, in the electrolyte bulk, as we call it. It's obvious that the data collected under such circumstances not always accurately and not always immediately reflected what was really going on at the metal surface", says Dr Iwona Flis-Kabulska from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw.

In an attempt to better understand the mechanisms governing the electrochemistry and corrosion of metal surfaces, researchers from the IPC PAS developed a new measurement tool. It is an antimony microelectrode with a design allowing for performing easy and reproducible measurements just over the metal surface – at a distance of one tenth of a millimeter only. A patent application for the device was filed.

The new microelectrode is made of a glass capillary filled with liquid antimony. Stretched to reduce the cross section and cut flat, the microelectrode enables carrying out measurements at hard surfaces, in a liquid environment. It is thus suitable for monitoring electrochemical reactions and corrosion processes resulting from interaction between metal and solution or a thin water film.

A good point of the microelectrode developed at the IPC PAS is that the measurements can be easily performed. The designs available earlier on the market required, i.a., the use of micromanipulators for precise placement of electrodes at the surface. "We make use of ordinary geometry. We just move a flat cut glass microelectrode tip closer to the surface of the tested metal, at an appropriate angle. We know the tip diameter and the angle, at which it has been moved closer to the surface, so we know immediately how it is tilted to the surface, and therefore what is the distance between the metal and the antimony core inside the electrode", says Dr Flis-Kabulska.

During measurements, the flat microelectrode tip is tilted to the surface of the tested metal, which means that it does not contact the metal surface with its entire surface. This fact provides additional benefits. Protons produced in reactions on the surface do not disperse quickly in the solution. Their diffusion is slowed down, and it significantly increases the instrument sensitivity and the accuracy of measurements.

The antimony microelectrode from the IPC PAS shows the highest sensitivity in measurements of pH changes ranging from 3 to 10.

The application potential of the new microelectrode is broad. The instrument was constructed with applications in the laboratory research in mind. Due to low manufacturing cost, simplicity and reproducibility of measurements, as well as high sensitivity to changes, the microelectrode could be also used in field tests, for instance as a component of sensors monitoring the condition of reinforced concrete structures.

This press release was prepared thanks to the NOBLESSE grant under the activity "Research potential" of the 7th Framework Programme of the European Union.

The Institute of Physical Chemistry of the Polish Academy of Sciences (http://www.ichf.edu.pl/) was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually

Dr. Iwona Flis-Kabulska | EurekAlert!
Further information:
http://www.ichf.edu.pl

Further reports about: CHEMISTRY IPC PAS chemical reaction electrochemical reaction metal surface

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>