Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticide build-up could lead to poor honey bee health

19.08.2008
Honey bees industriously bring pollen and nectar to the hive, but along with the bounty comes a wide variety of pesticides, according to Penn State researchers.

Add the outside assault to the pesticides already in the waxy structure of the hive, and bee researchers see a problem difficult to evaluate and correct. However, an innovative approach may mitigate at least some beeswax contamination.

The researchers present their analysis of pollen, brood, adult bees and wax samples today (Aug 18) at the 236th national American Chemical Society meeting in Philadelphia. Those results show unprecedented levels of fluvalinate and coumaphos -- pesticides used in the hives to combat varroa mites -- in all comb and foundation wax samples. They also found lower levels of 70 other pesticides and metabolites of those pesticides in pollen and bees.

"Everyone figured that the acaricides (anti-varroa mite chemicals) would be present in the wax because the wax is reprocessed to form the structure of the hives," says Maryann Frazier, senior extension associate. "It was a bit of a shock to see the levels and the widespread presence of these pesticides."

While the researchers expected the presence of the chemicals available to treat varroa mites in the hives, the other pesticides' levels were also surprising. All of the bees tested showed at least one pesticide and pollen averaged six pesticides with as many as 31 in a sample.

"We already had in place ways to test for viruses, bacteria and fungi, but it was difficult to find an analytical laboratory that could analyze for unknown pesticides," says Christopher A. Mullin, professor of entomology. "We needed them to take a comprehensive look at all pesticides, not just those associated with beekeeping."

They eventually turned to the National Science Laboratory of the U.S. Department of Agricultural Marketing Service that already tests commodities such as milk and fruits and vegetables to allow them to meet national and international standards.

"When we began doing this work, honey was not regularly analyzed, and bee pollen was not a commodity and so was not analyzed," says Mullin. "We decided to go with the types of screening the lab does for milk and apples which look at over 170 pesticides. Now, honey is included in the commodities to be analyzed."

The researchers, including Roger Simonds, a chemist at the National Science Laboratory decided on a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method because it uses smaller samples. They coupled this with gas and liquid chromatography to develop methods of analyzing pollen, bees and wax.

"Simplicity was important because there were many people across the country sampling for us," says Maryann Frazier. "Now rather than having them collect 15 grams of pollen they need only collect 3 grams."

The researchers note that this method also uses less solvent and generates data in the parts per billion range.

While beekeepers will have a difficult time controlling pesticide exposure outside the hive, the researchers tested a method for reducing the acaricide load in beeswax. Using gamma radiation from a cobalt 60 source housed at Penn State's Breazeale Reactor, they irradiated the sheets of beeswax that beekeepers use as the structural foundation for the bees to build their combs. They used radiation levels at the high end of that used to irradiate foods. Irradiation broke down about 50 percent of the acaricides in the wax.

"Gamma radiation is often used to kill viruses and other disease causing agents," says James L. Frazier, professor of entomology, Penn State. "Commercial irradiation firms usually decontaminate medical instruments or foods."

The researchers tried irradiation at a commercial plant and though some modifications were necessary to irradiate the wax sheets, it is possible. Some beekeepers already irradiate their equipment to get rid of any disease causing agents. However, it might be more efficient if the wax sheet supplier irradiated their product before sale to the beekeepers.

Beekeepers cannot manage the environmental pesticide contamination as easily as the wax contamination. The U. S. Environmental Protection Agency does regulate and monitor pesticides, but they do not have the ability to monitor the interaction of these chemicals. With the large number of pesticides found in bees and pollen, interactions are likely.

"We are finding fungicides that function by inhibiting the steroid metabolism in the fungal diseases they target, but these chemicals also affect similar enzymes in other organisms," says James Frazier. "These fungicides, in combination with pyrethroids and/or neonicotinoids can sometimes have a synergistic effect 100s of times more toxic than any of the pesticides individually."

For CCD, bees are not dying in their hives, but are not returning to their hives. James Frazier notes it is difficult to observe bees outside the hive. The U.S. EPA only looks at acute exposure to individual pesticides, but chronic exposure may cause behavioral changes that are unmonitored.

"We do not know that these chemicals have anything to do with Colony Collapse Disorder, but they are definitely stressors in the home and in the food sources," says Dr. Frazier. "Pesticides alone have not shown they are the cause of CCD. We believe that it is a combination of a variety of factors, possibly including mites, viruses and pesticides."

The researchers, who also include Sara Ashcraft, research assistant, have a team uniquely suited to looking at the honey bee pesticide problem because they combine a toxicologist in Mullin, a physiologist in James Frazier and someone with connections to beekeepers across the country in Maryann Frazier.

"We now want to look at small versus large operations and organic versus nonorganic operations to see if there are differences," says Maryann Frazier.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>