Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Periodontal pathogens enhance HIV-1 promoter activation in T cells

05.03.2010
Today, during the 39th Annual Meeting of the American Association for Dental Research, convening at the Walter E. Washington Convention Center in Washington, DC, lead researcher O.A. Gonzalez (University of Kentucky, Lexington) will present a poster of a study titled "TLR2 and TLR9 Activation by Periodontal Pathogens induce HIV-1 Reactivation."

Although oral co-infections (e.g. periodontal disease) are highly prevalent in HIV-1 patients and appear to positively correlate with viral load levels, the potential for oral bacteria to induce HIV-1 reactivation in latently infected cells has received little attention. The researchers involved in this study have proved that periodontal pathogens enhanced HIV-1 promoter activation in T-cells, monocytes/macrophages and dendritic cells; however the mechanisms involved in this response remain undetermined.

The objective of this study was to determine the role of Toll-like receptors (TLR) in HIV-1 reactivation induced by periodontal pathogens. The oral Gram-negative but not Gram-positive bacteria enhanced HIV-1LTR activation in BF24 cells. TLR9 activation by F. nucleatum and TLR2 by both Gram-negative bacteria were involved in this response, however TLR4 activation had no effect. Use of NFkB or Sp1 specific chemical inhibitors suggested that these transcription factors are positive and negative regulators of bacterially-induced HIV-1LTR activation, respectively. HIV-1LTR activation and viral replication were similarly induced in THP89GFP cells.

Finally, production of TNFa was enhanced by Gram-negative bacteria and its neutralization reduced HIV-1 reactivation. These results suggest that TLR2 and TLR9 activation by P. gingivalis and F. nucleatum, as well as TNFa produced in response to challenge enhance HIV-1 reactivation in monocytes/macrophages. Increased bacterial growth and emergence of periodontopathogens or their products accompanying chronic oral inflammatory diseases could be risk modifiers for viral replication and transmission, systemic immune activation and AIDS progression in HIV-1 patients.

This is a summary of abstract #927, "TLR2 and TLR9 Activation by Periodontal Pathogens induce HIV-1 Reactivation," to be presented by O.A. Gonzalez at 2 p.m. on Friday, March 5, 2010, in Exhibit Hall D of the Walter E. Washington Convention Center, during the 39th Annual Meeting of the American Association for Dental Research.

About the American Association for Dental Research

The American Association for Dental Research (AADR), headquartered in Alexandria, Va., is a nonprofit organization with nearly 4,000 members in the United States. Its mission is: (1) to advance research and increase knowledge for the improvement of oral health; (2) to support and represent the oral health research community; and (3) to facilitate the communication and application of research findings. AADR is the largest Division of the International Association for Dental Research (IADR).

Ingrid Thomas | EurekAlert!
Further information:
http://www.aadronline.org

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>