Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PER:PER protein pair required for circadian clock function

29.04.2009
Scientists from Queen Mary, University of London have discovered a new protein complex operating in fruit fly circadian clocks, which may also help to regulate our own biological clocks.

Circadian clocks are thought to have evolved to enable organisms to match their behaviour to specific time slots during the 24 hour day. They are synchronised with our surrounding environment via natural light or temperature cycles.

Professor Ralf Stanewsky and his team from Queen Mary's School of Biological and Chemical Sciences study the circadian clocks of Drosophila, a type of fruit fly. The flies' body-clocks are regulated by two proteins called Period (PER) and Timeless (TIM).

The current model of circadian clocks in flies involves the formation of complexes between these two different clock proteins, known as heterodimers (TIM:PER). Similarly, mammalian circadian clocks (including those in humans) also rely on a heterodimer complex made up of the Period (PER) and Cryptochrome (CRY) proteins.

But now, a new study performed in Professor Stanewsky's lab shows that a complex made of two identical Period proteins, known as a PER:PER homodimer is also crucial for circadian clock function in flies. Writing in the journal PLoS Biology, Stanewsky explains how his team designed a PER protein which could only join with TIM, not with itself.

"We generated a mutation in the PER protein which prevented the formation of the PER:PER dimer, but not that of the PER:TIM heterodimer," he explains. "These mutant flies showed drastically impaired behaviour and molecular clock function, suggesting that PER homodimers are vital for the function of circadian clocks."

The mutant fly PER proteins were designed using structural protein data generated by Dr Eva Wolf at the MPI in Dortmund (Germany). In the same issue of PLoS Biology the Wolf group reports findings indicating that the PER:PER homodimer could also be an important feature of circadian clocks in mammals, including humans.

Sian Halkyard | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>