Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New peptides to fight ovarian cancer drug resistance

Italian and German scientists have designed peptides to target the protein-protein interface of a key enzyme in DNA synthesis crucial for cancer growth.

The peptides act by a novel inhibitory mechanism and curb cancer cell growth in drug resistant ovarian cancer cells. The interdisciplinary research project was led by the University of Modena and Reggio Emilia (UNIMORE) and the Heidelberg Institute for Theoretical Studies (HITS).

Structure of human thymidylate synthase with an inhibitory peptide bound at its dimer interface determined by x-ray crystallography. The protein is shown with a cartoon representation of its secondary structure colored according to sequence and the peptide is colored by atom-type with its electron density contoured in blue. Picture: Cardinale et al., PNAS (2011) 27 July 2011

Worldwide, over 200,000 women are diagnosed with ovarian cancer every year, with higher incidence in developed countries where it is the fifth leading cause of cancer-related deaths in women. Ovarian cancer has a high mortality rate due to frequent late diagnosis and the rapid development of drug resistance. Several clinically important anti-cancer drugs that are widely used in chemotherapy inhibit the enzyme, thymidylate synthase, which plays a key role in DNA synthesis. However, the use of these drugs is associated with drug resistance and new compounds with different inhibitory mechanisms are required to combat resistance.

Scientists from Italy and Germany have designed octapeptides that specifically target the protein-protein interface of thymidylate synthase. Thymidylate synthase is composed of two identical polypeptide chains, i.e. it is a homodimer. The peptides stabilize the inactive form of the enzyme, show a novel mechanism of inhibition for homodimeric enzymes, and inhibit cell growth in drug sensitive and resistant cancer cell lines.

The interdisciplinary collaboration between scientists in Italy and Germany, led by Maria Paola Costi and Glauco Ponterini at the University of Modena and Reggio Emilia, Stefano Mangani at the University of Siena (UNISI) and Rebecca Wade at Heidelberg Institute for Theoretical Studies (HITS), was part of the LIGHTS project (LIGands to interfere with human TS). The project was supported by the Sixth Framework Programme (FP6), an EU scheme to fund and promote European research and technological development.

The researchers have discovered several peptides that inhibit thymidylate synthase by modulating protein-protein interactions. Maria Paola Costi explains: “These peptides have sequences from the protein-protein interface of the enzyme and inhibit it by binding to a previously unknown allosteric binding site - that is, a site other than the protein's active site - at the protein-protein interface.” By a combination of experimental and computational approaches, it was shown that their inhibitory mechanism involving stabilization of an inactive form of the catalytic protein differs from those of protein-protein interface inhibitors reported to date.

Unlike the existing drugs targeting thymidylate synthase, these peptides inhibit intra-cellular thymidylate synthase and cell growth without leading to increased levels of thymidylate synthase protein when administered to ovarian cancer cells. “This observation indicates the potential value of these peptides in overcoming drug resistance problems, although the cellular effects remain to be fully explored,” says Rebecca Wade. Further steps will require optimization of the compounds discovered and detailed analysis of their cellular mechanism of action. The concepts revealed by this work can be expected to provide new avenues for the development of drugs for combating diseases such as ovarian cancer.

The original scientific article:
Cardinale et al., Protein-protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase. PNAS (2011) 27 July 2011 (published online before print).

doi: 10.1073/pnas.1104829108

Press Contact
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533-245
Fax: +49-6221-533-198
Scientific Contacts
Prof. Maria Paola Costi
Dipartimento di Scienze Farmaceutiche,
Universita degli Studi di Modena e Reggio Emilia,
Via Campi 183,
41100 Modena,
Phone 0039-0592055125
Fax 0039-0592055131
Prof. Stefano Mangani
Dipartimento di Chimica,
Università degli Studi di Siena,
Via Aldo Moro 2,
53100 Siena,
Phone 0039-0577-234255
Fax 0039-0577-243233
Dr. Rebecca Wade
Molecular and Cellular Modeling Group
Heidelberg Institute for Theoretical Studies (HITS)
Schloss-Wolfsbrunnenweg 35
69118 Heidelberg
Phone: +49 (0)6221 - 533 - 247
Fax: +49 (0)6221 - 533 - 298
University of Modena and Reggio Emilia (UNIMORE) is one of the oldest universities in Europe and currently has more than 20,000 students. Eight of the twelve faculties are located in Modena, among them the Biotechnology and Bioscience faculty with the Department of Pharmaceutical Sciences.

University of Siena (UNISI) is one of the oldest universities in Italy and currently has around 20,000 students. The university has nine schools, one of them being the School of Mathematical, Physical and Natural Sciences with the Department of Chemistry.

HITS (Heidelberg Institute for Theoretical Studies) is a private, non-profit research institute carrying out multidisciplinary research in the computational sciences. It was established in 2010 as a successor to the EML Research. HITS receives its base funding from the Klaus Tschira Foundation, which was established in 1995.

Dr. Peter Saueressig | idw
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>