Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study links mutations in notch gene to role in B cell cancers

24.10.2017

Notch is one of the most frequently mutated genes in chronic lymphocytic leukemia (CLL), the most common leukemia in adults in the United States. It is also often mutated in other common B cell tumors, such as mantle cell lymphoma. However, the role of Notch in these cancers has been uncertain. Now, a collaborative effort between investigators at the Perelman School of Medicine at the University of Pennsylvania and the Harvard Medical School provides new insights into how Notch drives the growth of B-cell cancers. The teams report their findings in Cell Reports.

The researchers found that in B cell tumors, mutated overactive versions of the Notch protein directly drive the expression of the Myc gene and many other genes that participate in B cell signaling pathways. Myc is a critical gene in governing cell proliferation and survival, activities that it carries out by regulating the expression of other genes involved in cell metabolism.


Peripheral blood with chronic lymphocytic leukemia cells.

Image courtesy of Jon Aster, Harvard Medical School

B cell signaling pathways are the current targets of several therapies used to treat B cell malignancies such as CLL. "An important translational implication of this research is that we hope that by combining Notch inhibitors with drugs that target B-cell signaling we can better treat these B-cell cancers," said senior author Warren Pear, MD, PhD, a professor of Pathology and Laboratory Medicine at Penn Medicine.

"Although this is true of many transcription factors, it has been difficult to develop therapeutics that directly target the Myc protein, an alternative approach may be to target the proteins that regulate Myc expression." Notably, multiple Notch inhibitors are in various stages of clinical development as potential cancer therapies.

The mechanism used by Notch to regulate Myc in B cells is distinct from the mechanism used in other cell types, such as T cells, where Notch also regulates Myc. The team found that Notch uses different regulatory switches in the genome, called enhancers, in different cell types. This raises the issue of why evolution would select for this complexity.

One reason may be that Myc needs to be under very tight control in each cell. For example, in the mouse model of Notch-induced T-cell leukemia, the Penn group previously found that the difference between inducing a T cell tumor or not is a doubling of Myc transcription by Notch. As Notch appears to use cell type-specific machinery to regulate Myc, it may be possible to target the Notch-Myc signaling path in a way that does not disrupt this path in other cell types.

Another surprising finding was the direct link between Notch and genes involved in other B cell signaling pathways. For example, Notch activates genes involved in B cell receptor signaling, which is an established drug target in these B cell cancers.

The challenge now will be to understand what this might mean for treatment of patients with Notch-activated B-cell leukemias and lymphomas. The team plans to test the synergy between Notch and B-cell signaling inhibitors. If they find a relationship, the next step would be to stimulate interest in a clinical trial.

###

The study is collaboration between the Pear laboratory, including co-first author Jelena Petrovic and the lab of Roberty Faryabi, PhD at Penn, along with the labs of Brad Bernstein and Jon Aster, Harvard Medical School. Co-first author Russell Ryan, from the Bernstein lab, is now an assistant professor at the University of Michigan.

This work was funded by the National Institutes of Health (P01 CA119070, R01AI047833, U01HL100405), the Leukemia and Lymphoma Society, the Penn Epigenetics Institute, a Financial Peace University fellowship, a National Marfan Foundation Award, the Burroughs Wellcome Fund, and grants from the Spanish government and Red Tematica de Investigacia Cooperativa en Cancer.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $6.7 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2016 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2016, Penn Medicine provided $393 million to benefit our community.

Karen Kreeger | EurekAlert!

Further reports about: B-cell Medicine Notch cell types signaling pathways

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>