Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn biologists explain how organisms can tolerate mutations, yet adapt to environmental change

21.01.2010
Biologists at the University of Pennsylvania studying the processes of evolution appear to have resolved a longstanding conundrum: How can organisms be robust against the effects of mutations yet simultaneously adaptable when the environment changes?

The short answer, according to University of Pennsylvania biologist Joshua B. Plotkin, is that these two requirements are often not contradictory and that an optimal level of robustness maintains the phenotype in one environment but also allows adaptation to environmental change.

Using an original mathematical model, researchers demonstrated that mutational robustness can either impede or facilitate adaptation depending on the population size, the mutation rate and a measure of the reproductive capabilities of a variety of genotypes, called the fitness landscape. The results provide a quantitative understanding of the relationship between robustness and evolvability, clarify a significant ambiguity in evolutionary theory and should help illuminate outstanding problems in molecular and experimental evolution, evolutionary development and protein engineering.

The key insight behind this counterintuitive finding is that neutral mutations can set the stage for future, beneficial adaptation. Specifically, researchers found that more robust populations are faster to adapt when the effects of neutral and beneficial mutations are intertwined. Neutral mutations do not impact the phenotype, but they may influence the effects of subsequent mutations in beneficial ways.

To quantify this idea, the study's authors created a general mathematical model of gene interactions and their effects on an organism's phenotype. When the researchers analyzed the model, they found that populations with intermediate levels of robustness were the fastest to adapt to novel environments. These adaptable populations balanced genetic diversity and the rate of phenotypically penetrant mutations to optimally explore the range of possible phenotypes.

The researchers also used computer simulations to check their result under many alternative versions of the basic model. Although there is not yet sufficient data to test these theoretical results in nature, the authors simulated the evolution of RNA molecules, confirming that their theoretical results could predict the rate of adaptation.

"Biologists have long wondered how can organisms be robust and also adaptable," said Plotkin, assistant professor in the Department of Biology in Penn's School of Arts and Sciences. "After all, robust things don't change, so how can an organism be robust against mutation but also be prepared to adapt when the environment changes? It has always seemed like an enigma."

Robustness is a measure of how genetic mutations affect an organism's phenotype, or the set of physical traits, behaviors and features shaped by evolution. It would seem to be the opposite of evolvability, preventing a population from adapting to environmental change. In a robust individual, mutations are mostly neutral, meaning they have little effect on the phenotype. Since adaptation requires mutations with beneficial phenotypic effects, robust populations seem to be at a disadvantage. The Penn-led research team has demonstrated that this intuition is sometimes wrong.

The study, appearing in the current issue of the journal Nature, was conducted by Jeremy A. Draghi, Todd L. Parsons and Plotkin from Penn's Department of Biology and Günter P. Wagner of the Department of Ecology and Evolutionary Biology at Yale University.

The study was funded by the Burroughs Wellcome Fund, the David and Lucile Packard Foundation, the James S. McDonnell Foundation, the Alfred P. Sloan Foundation, the Defense Advanced Research Projects Agency, the John Templeton Foundation, the National Institute of Allergy and Infectious Diseases and the Perinatology Research Branch of the National Institutes of Health.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>