Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn biologists explain how organisms can tolerate mutations, yet adapt to environmental change

21.01.2010
Biologists at the University of Pennsylvania studying the processes of evolution appear to have resolved a longstanding conundrum: How can organisms be robust against the effects of mutations yet simultaneously adaptable when the environment changes?

The short answer, according to University of Pennsylvania biologist Joshua B. Plotkin, is that these two requirements are often not contradictory and that an optimal level of robustness maintains the phenotype in one environment but also allows adaptation to environmental change.

Using an original mathematical model, researchers demonstrated that mutational robustness can either impede or facilitate adaptation depending on the population size, the mutation rate and a measure of the reproductive capabilities of a variety of genotypes, called the fitness landscape. The results provide a quantitative understanding of the relationship between robustness and evolvability, clarify a significant ambiguity in evolutionary theory and should help illuminate outstanding problems in molecular and experimental evolution, evolutionary development and protein engineering.

The key insight behind this counterintuitive finding is that neutral mutations can set the stage for future, beneficial adaptation. Specifically, researchers found that more robust populations are faster to adapt when the effects of neutral and beneficial mutations are intertwined. Neutral mutations do not impact the phenotype, but they may influence the effects of subsequent mutations in beneficial ways.

To quantify this idea, the study's authors created a general mathematical model of gene interactions and their effects on an organism's phenotype. When the researchers analyzed the model, they found that populations with intermediate levels of robustness were the fastest to adapt to novel environments. These adaptable populations balanced genetic diversity and the rate of phenotypically penetrant mutations to optimally explore the range of possible phenotypes.

The researchers also used computer simulations to check their result under many alternative versions of the basic model. Although there is not yet sufficient data to test these theoretical results in nature, the authors simulated the evolution of RNA molecules, confirming that their theoretical results could predict the rate of adaptation.

"Biologists have long wondered how can organisms be robust and also adaptable," said Plotkin, assistant professor in the Department of Biology in Penn's School of Arts and Sciences. "After all, robust things don't change, so how can an organism be robust against mutation but also be prepared to adapt when the environment changes? It has always seemed like an enigma."

Robustness is a measure of how genetic mutations affect an organism's phenotype, or the set of physical traits, behaviors and features shaped by evolution. It would seem to be the opposite of evolvability, preventing a population from adapting to environmental change. In a robust individual, mutations are mostly neutral, meaning they have little effect on the phenotype. Since adaptation requires mutations with beneficial phenotypic effects, robust populations seem to be at a disadvantage. The Penn-led research team has demonstrated that this intuition is sometimes wrong.

The study, appearing in the current issue of the journal Nature, was conducted by Jeremy A. Draghi, Todd L. Parsons and Plotkin from Penn's Department of Biology and Günter P. Wagner of the Department of Ecology and Evolutionary Biology at Yale University.

The study was funded by the Burroughs Wellcome Fund, the David and Lucile Packard Foundation, the James S. McDonnell Foundation, the Alfred P. Sloan Foundation, the Defense Advanced Research Projects Agency, the John Templeton Foundation, the National Institute of Allergy and Infectious Diseases and the Perinatology Research Branch of the National Institutes of Health.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>