Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penguins continue diving long after muscles run out of oxygen

12.05.2011
Breathing heavily at the edge of an ice hole, an Antarctic emperor penguin prepares to dive. Taking a last gulp of air, the bird descends and may not emerge again for another 20 minutes.

The penguin initially carries sufficient oxygen in three stores – the blood, lungs and myoglobin in muscle – to sustain aerobic metabolism. However, around 5.6 minutes after leaving the surface, lactate begins appearing in the penguin's blood and the bird crosses the so-called 'aerobic dive limit', switching to anaerobic metabolism in some tissues. So what triggers this transition?

Cassondra Williams from the Scripps Institution of Oceanography explains that the animals were thought to cross the aerobic dive limit when one of their three oxygen stores became exhausted. However, when Paul Ponganis measured oxygen levels in the blood and lungs of penguins after long dives, the animals had oxygen to spare. That only left the muscle as the potential trigger.

Williams explains that diving animals were thought to isolate their muscle from the circulatory system, leaving oxygen stored in the tissue as its only source of aerobic metabolism while submerged and forcing it to switch to anaerobic respiration once the supply was exhausted. So, she and Ponganis teamed up with Jessica Meir to travel to Antarctica to measure muscle oxygen levels in diving emperor penguin muscles and they publish their discovery that depleted muscle oxygen supplies trigger the aerobic dive limit in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/11/1802.abstract.

However, before their departure, Williams had to design a near-infrared spectrophotometer to record the penguins' muscle oxygen stores as they dived in the wild. After two trying years of technical development and testing, Williams was able to travel south with her colleagues to surgically implant the spectrophotometers in the pectoralis muscles of emperor penguins. They also attached time–depth recorders to the animals' backs to track their dive profiles. Finally, the team ensured that the animals would return with their precious equipment by drilling an isolated hole in the sea ice – to which the penguins were guaranteed to return – before releasing the implanted animals to go foraging for a day or two.

After successfully retrieving all of the spectrophotometers and dive recorders and returning the penguins to their colony, Williams began analysing the data and found that the penguins had been actively foraging beneath the ice. Of the 50 dives that Williams successfully recorded, 31 exceeded the emperor penguin's calculated dive limit.

Next, Williams plotted the muscle oxygen profiles over the course of each dive and identified two distinct patterns. In the first, the oxygen levels fell continually, approaching zero around the point when the birds crossed the aerobic dive limit. Williams says, 'This profile certainly supports the hypothesis that muscle oxygen depletion is the trigger of the aerobic dive limit.'

However, when the team saw the second pattern, they were surprised that, after initially falling, the oxygen levels plateaued for several minutes before falling again to almost zero. They realised that blood must be flowing into the muscle to replenish the oxygen supply during the middle phase of the dive, delaying the onset of the aerobic dive limit.

Finally, having confirmed that the dive muscles are the source of the aerobic dive limit, Williams calculated the muscle oxygen consumption rate for dives with the first oxygen depletion pattern and was amazed to see that it was only 12.4ml of oxygen per kg of muscle per minute: 1/10th the value calculated for penguins swimming in an artificial flume and only 2 times their resting metabolic rate. 'I think this metabolic rate is impressive. You can see how hard they are working underwater but they are efficient swimmers and very hydrodynamic,' says Williams.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Williams, C. L., Meir, J. U. and Ponganis, P. J. (2011). What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins. J. Exp. Biol. 214, 1802-1812.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>