Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penguins continue diving long after muscles run out of oxygen

12.05.2011
Breathing heavily at the edge of an ice hole, an Antarctic emperor penguin prepares to dive. Taking a last gulp of air, the bird descends and may not emerge again for another 20 minutes.

The penguin initially carries sufficient oxygen in three stores – the blood, lungs and myoglobin in muscle – to sustain aerobic metabolism. However, around 5.6 minutes after leaving the surface, lactate begins appearing in the penguin's blood and the bird crosses the so-called 'aerobic dive limit', switching to anaerobic metabolism in some tissues. So what triggers this transition?

Cassondra Williams from the Scripps Institution of Oceanography explains that the animals were thought to cross the aerobic dive limit when one of their three oxygen stores became exhausted. However, when Paul Ponganis measured oxygen levels in the blood and lungs of penguins after long dives, the animals had oxygen to spare. That only left the muscle as the potential trigger.

Williams explains that diving animals were thought to isolate their muscle from the circulatory system, leaving oxygen stored in the tissue as its only source of aerobic metabolism while submerged and forcing it to switch to anaerobic respiration once the supply was exhausted. So, she and Ponganis teamed up with Jessica Meir to travel to Antarctica to measure muscle oxygen levels in diving emperor penguin muscles and they publish their discovery that depleted muscle oxygen supplies trigger the aerobic dive limit in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/11/1802.abstract.

However, before their departure, Williams had to design a near-infrared spectrophotometer to record the penguins' muscle oxygen stores as they dived in the wild. After two trying years of technical development and testing, Williams was able to travel south with her colleagues to surgically implant the spectrophotometers in the pectoralis muscles of emperor penguins. They also attached time–depth recorders to the animals' backs to track their dive profiles. Finally, the team ensured that the animals would return with their precious equipment by drilling an isolated hole in the sea ice – to which the penguins were guaranteed to return – before releasing the implanted animals to go foraging for a day or two.

After successfully retrieving all of the spectrophotometers and dive recorders and returning the penguins to their colony, Williams began analysing the data and found that the penguins had been actively foraging beneath the ice. Of the 50 dives that Williams successfully recorded, 31 exceeded the emperor penguin's calculated dive limit.

Next, Williams plotted the muscle oxygen profiles over the course of each dive and identified two distinct patterns. In the first, the oxygen levels fell continually, approaching zero around the point when the birds crossed the aerobic dive limit. Williams says, 'This profile certainly supports the hypothesis that muscle oxygen depletion is the trigger of the aerobic dive limit.'

However, when the team saw the second pattern, they were surprised that, after initially falling, the oxygen levels plateaued for several minutes before falling again to almost zero. They realised that blood must be flowing into the muscle to replenish the oxygen supply during the middle phase of the dive, delaying the onset of the aerobic dive limit.

Finally, having confirmed that the dive muscles are the source of the aerobic dive limit, Williams calculated the muscle oxygen consumption rate for dives with the first oxygen depletion pattern and was amazed to see that it was only 12.4ml of oxygen per kg of muscle per minute: 1/10th the value calculated for penguins swimming in an artificial flume and only 2 times their resting metabolic rate. 'I think this metabolic rate is impressive. You can see how hard they are working underwater but they are efficient swimmers and very hydrodynamic,' says Williams.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Williams, C. L., Meir, J. U. and Ponganis, P. J. (2011). What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins. J. Exp. Biol. 214, 1802-1812.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>