Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penguins continue diving long after muscles run out of oxygen

12.05.2011
Breathing heavily at the edge of an ice hole, an Antarctic emperor penguin prepares to dive. Taking a last gulp of air, the bird descends and may not emerge again for another 20 minutes.

The penguin initially carries sufficient oxygen in three stores – the blood, lungs and myoglobin in muscle – to sustain aerobic metabolism. However, around 5.6 minutes after leaving the surface, lactate begins appearing in the penguin's blood and the bird crosses the so-called 'aerobic dive limit', switching to anaerobic metabolism in some tissues. So what triggers this transition?

Cassondra Williams from the Scripps Institution of Oceanography explains that the animals were thought to cross the aerobic dive limit when one of their three oxygen stores became exhausted. However, when Paul Ponganis measured oxygen levels in the blood and lungs of penguins after long dives, the animals had oxygen to spare. That only left the muscle as the potential trigger.

Williams explains that diving animals were thought to isolate their muscle from the circulatory system, leaving oxygen stored in the tissue as its only source of aerobic metabolism while submerged and forcing it to switch to anaerobic respiration once the supply was exhausted. So, she and Ponganis teamed up with Jessica Meir to travel to Antarctica to measure muscle oxygen levels in diving emperor penguin muscles and they publish their discovery that depleted muscle oxygen supplies trigger the aerobic dive limit in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/11/1802.abstract.

However, before their departure, Williams had to design a near-infrared spectrophotometer to record the penguins' muscle oxygen stores as they dived in the wild. After two trying years of technical development and testing, Williams was able to travel south with her colleagues to surgically implant the spectrophotometers in the pectoralis muscles of emperor penguins. They also attached time–depth recorders to the animals' backs to track their dive profiles. Finally, the team ensured that the animals would return with their precious equipment by drilling an isolated hole in the sea ice – to which the penguins were guaranteed to return – before releasing the implanted animals to go foraging for a day or two.

After successfully retrieving all of the spectrophotometers and dive recorders and returning the penguins to their colony, Williams began analysing the data and found that the penguins had been actively foraging beneath the ice. Of the 50 dives that Williams successfully recorded, 31 exceeded the emperor penguin's calculated dive limit.

Next, Williams plotted the muscle oxygen profiles over the course of each dive and identified two distinct patterns. In the first, the oxygen levels fell continually, approaching zero around the point when the birds crossed the aerobic dive limit. Williams says, 'This profile certainly supports the hypothesis that muscle oxygen depletion is the trigger of the aerobic dive limit.'

However, when the team saw the second pattern, they were surprised that, after initially falling, the oxygen levels plateaued for several minutes before falling again to almost zero. They realised that blood must be flowing into the muscle to replenish the oxygen supply during the middle phase of the dive, delaying the onset of the aerobic dive limit.

Finally, having confirmed that the dive muscles are the source of the aerobic dive limit, Williams calculated the muscle oxygen consumption rate for dives with the first oxygen depletion pattern and was amazed to see that it was only 12.4ml of oxygen per kg of muscle per minute: 1/10th the value calculated for penguins swimming in an artificial flume and only 2 times their resting metabolic rate. 'I think this metabolic rate is impressive. You can see how hard they are working underwater but they are efficient swimmers and very hydrodynamic,' says Williams.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Williams, C. L., Meir, J. U. and Ponganis, P. J. (2011). What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins. J. Exp. Biol. 214, 1802-1812.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>