Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patterns of new DNA letter in brain suggest distinct function

31.10.2011
Vocabulary of epigenetics expanding

In 2009, the DNA alphabet expanded. Scientists discovered that an extra letter or "sixth nucleotide" was surprisingly abundant in DNA from stem cells and brain cells.

Now, researchers at Emory University School of Medicine have mapped the patterns formed by that letter in the brains of mice, observing how its pattern of distribution in the genome changes during development and aging.

Those patterns, stable or dynamic depending on the gene, suggest that 5-hydroxymethylcytosine (5-hmC) has its own distinct functions, which still need to be fully brought to light.

"Our data tells us that 5-hmC is not just an intermediate state," says senior author Peng Jin, PhD, associate professor of human genetics at Emory University School of Medicine. "It looks like it has specific functions in stem cells and brain. 5-hmC may poise a gene to be turned on after being repressed."

The results were published online Sunday by the journal Nature Neuroscience. The paper is the first report on how the patterns of 5-hmC's distribution change in mouse brain during development, and also contains data on 5-hmC in DNA samples from human brain.

Postdoctoral fellow Keith Szulwach and instructor Xuekun Li are co-first authors, and collaborators from the University of Chicago and the University of Wisconsin-Madison contributed to the paper.

5-hydroxymethylcytosine (5-hmC) is an epigenetic modification of cytosine, one of the four bases or "letters" making up DNA. Epigenetic modifications are changes in the way genes are turned on or off, but are not part of the underlying DNA sequence. 5-hmC resembles 5-methylcytosine (5-mC), another modified DNA base that scientists have been studying for decades. Until recently, chemical techniques did not allow scientists to tell the difference between them.

In contrast to 5-mC, 5-hmC appears to be enriched on active genes, especially in brain cells. 5-mC is generally found on genes that are turned off or on repetitive "junk" regions of the genome. When stem cells change into the cells that make up blood, muscle or brain, 5-mC helps shut off genes that aren't supposed to be turned on. Changes in 5-mC's distribution also underpin a healthy cell's transformation into a cancer cell.

It looks like 5-hmC can only appear on DNA where 5-mC already was present. This could be a clue that 5-hmC could be a transitory sign that the cell is going to remove a 5-mC mark. Jin says the patterns his team sees tell a different story, at least for some genes. On those genes, the level of 5-hmC is stably maintained and increases with age.

The Emory team used a method for chemically labeling 5-hmC they developed in cooperation with scientists at the University of Chicago. They find that 5-hmC is ten times more abundant in brain than in stem cells, and it is found more in the body of some genes, compared to stem cells.

In addition, the researchers found a relative lack of 5-hmC on X chromosomes in both males and females. That result is a surprise, Jin says, because it was already known that the X chromosome is subject to a special form of regulation in females only. Males have one X chromosome and females have two, and in female cells one of the X chromosomes is inactivated.

Jin's team is beginning to map how 5-hmC changes in neurological disorders, including Rett syndrome and autism, and refining techniques for detecting 5-hmC in DNA at high resolution.

The research was supported by the National Institutes of Health, the Simons Foundation and the Emory Genetics Discovery Initiative.

Reference: K.E. Szulwach et al 5-hydroxymethylcytosine–mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuro. (2011).

Writer: Quinn Eastman

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service.

Learn more about Emory's health sciences:
Blog: http://emoryhealthblog.com
Twitter: @emoryhealthsci
Web: http://emoryhealthsciences.org

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>