Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patient’s Own Cells May Hold Therapeutic Promise After Reprogramming, Gene Correction

05.04.2011
Study shows patient’s own cells may hold therapeutic promise after reprogramming, gene correction

Scientists from the Morgridge Institute for Research, the University of Wisconsin-Madison, the University of California and the WiCell Research Institute moved gene therapy one step closer to clinical reality by determining that the process of correcting a genetic defect does not substantially increase the number of potentially cancer-causing mutations in induced pluripotent stem cells.

Their work, scheduled for publication the week of April 4 in the online edition of the journal Proceedings of the National Academy of Sciences and funded by a Wynn-Gund Translational Award from the Foundation Fighting Blindness, suggests that human induced pluripotent stem cells altered to correct a genetic defect may be cultured into subsequent generations of cells that remain free of the initial disease. However, although the gene correction itself does not increase the instability or the number of observed mutations in the cells, the study reinforced other recent findings that induced pluripotent stem cells themselves carry a significant number of genetic mutations.

“This study showed that the process of gene correction is compatible with therapeutic use,” says Sara Howden, primary author of the study, who serves as a postdoctoral research associate in James Thomson’s lab at the Morgridge Institute for Research. “It also was the first to demonstrate that correction of a defective gene in patient-derived cells via homologous recombination is possible.”

Like human embryonic stem cells, induced pluripotent stem cells can become any of the 220 mature cell types in the human body. Induced pluripotent stem cells are created when skin or other mature cells are reprogrammed to a pluripotent state through exposure to select combinations of genes or proteins.

Since they can be derived from a patient’s own cells, induced pluripotent stem cells may offer some clinical advantages over human embryonic stem cells by avoiding problems with rejection. However, scientists are still working to understand subtle differences between human embryonic and induced pluripotent stem cells, including a higher rate of genetic mutations among the induced pluripotent cells and evidence that the cells may retain some “memory” of their previous lineage.

Gene therapy using induced pluripotent stem cells holds promise for treating many inherited and acquired diseases such as Huntington’s disease, degenerative retinal disease or diabetes. The patient in this study suffers from a degenerative eye disease known as gyrate atrophy, which is characterized by progressive loss of visual acuity and night vision leading to eventual blindness.

While diseases such as genetic retinal disorders and diabetes offer attractive targets for induced pluripotent stem cell-based transplant therapies, concerns have been raised over the commonly occurring mutations in the cells and their potential to become cancerous.

Howden says that because gene targeting to correct specific genetic defects typically requires an extended culture period beyond initial induced pluripotent stem cell generation, researchers have been interested to learn whether the process would increase the number of mutations in the cells. The team set out to determine if it was possible to correct defects without introducing a level of mutations that would be incompatible with clinical applications.

In the study, the researchers used a technique called episomal reprogramming to generate the induced pluripotent stem cells. In contrast to techniques that use retroviruses, episomal reprogramming doesn’t involve inserting DNA into the genome. This technique allowed them to produce cells that were free of potentially harmful transgene sequences.

The scientists then corrected the actual retinal disease-causing gene defect using a technique called homologous recombination. The stem cells were extensively “characterized” or studied before and after the process to assess whether they developed significant additional mutations or variations. The results showed that the culture conditions required to correct a genetic defect did not substantially increase the number of mutations.

“By showing that the process of correcting a genetic defect in patient-derived induced pluripotent cells is compatible with therapeutic use, we eliminated one barrier to gene therapy based on these cells,” Howden says. “There is still much work to be done.”

David Gamm, an author of the study and an assistant professor with the Department of Ophthalmology and the Waisman Center Stem Cell Research Program, says the ability to correct gene defects in a patient's own induced pluripotent stem cells should increase the appeal of stem cell technology to researchers striving to improve vision in patients with inherited blinding disorders.

“Although further development certainly is needed before such techniques may reach the clinical trial stage, our findings offer reason for continued hope,” Gamm says. “Dr. Howden and our collaborative group have overcome an important hurdle which, when considered in the context of other recent developments, may lead to personalized stem cell therapies that benefit people with genetic visual disorders.”

In addition to primary author Howden, who holds joint appointments with the Morgridge Institute for Research, the Department of Cell and Regenerative Biology and the Genome Center of Wisconsin, co-authors of the study included: Thomson, who in addition holds an appointment with the Department of Molecular, Cellular & Developmental Biology, University of California-Santa Barbara; Gamm, who holds joint appointments with the UW-Madison School of Medicine and Public Health’s Department of Ophthalmology and Visual Sciences and the Waisman Center Stem Cell Research Program; Jeff Nie, Goukai Chen, Brian McIntosh, Daniel Gulbranson, Nicole Diol and David Vereide with the Morgridge Institute for Research; Athurva Gore, Zhe Li, Ho-Lim Fung and Kun Zhang, of the Department of Bioengineering at the University of California-San Diego; and Benjamin Nisler, Seth Taapken and Karen Dyer Montgomery of WiCell Research Institute.

Made possible with support from John and Tashia Morgridge, the Wisconsin Alumni Research Foundation and the state of Wisconsin, the interdisciplinary Morgridge Institute for Research aims to speed the process through which discoveries in the laboratory are delivered to the public to advance human health and well-being. The private, nonprofit Morgridge Institute for Research is located on the UW–Madison campus and works collaboratively with the public Wisconsin Institute for Discovery. For more, visit http://discovery.wisc.edu/morgridge.

Sara Howden | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>