Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasites in humans influence each other via shared food sources

12.03.2014

Humans are often infected by parasites, sometimes even several species at a time. Such co-infections are more difficult to treat if the parasites interact with each other. An ecologist from the University of Zurich and his international team have compiled a list of the numerous possibilities as to how parasites can interact: They are most likely to do so indirectly via the food source they share.

Over 1,400 species of parasites – viruses, bacteria, fungi, intestinal worms and protozoa – are able to infect humans. In most cases, the right medicine against a parasite cures the patient.

If he or she suffers from an infection by two or more species of parasite at the same time, however, it soon be-comes more difficult to diagnose and treat. Medication can even exacerbate the medical condition if one pathogen is killed off but the second flourishes. One reason is the little-understood interactions between the parasites that reside in the same host. 

In a study published in Proceedings of Royal Society B, an international team of researchers including Professor Owen Petchey from the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich presents a network that explains how different pathogens and parasite groups mutually influence each other in the human body.

Surprisingly, the biologists discovered that the par-asites are most likely to interact via the food source they share – not the immune response or directly through contact with other parasites. 

Complex overview with clear patterns

Co-infections are very common: Simultaneous infestations by different intestinal worms, for instance, affect around 800 million people worldwide. In order to develop effective treatment approaches for co-infections, says Owen Petchey, we need to understand the structures of the parasite communities in a host – in this case individual humans – and the interactions between the parasites better.

The ecolthen analyzed over 2,900 combinations of all these factors in an unprecedented manner.

The network displays clear patterns: The infected part of the body and the same food resource are the most common contact points that can lead to an interaction between the different parasites. “We found twice as many parasites fighting for the same energy source as parasites that elicit the same immune response and are able to interact in that way,” explains Petchey.

The manner in which the immune system responds to the individual pathogens seems to be of secondary importance, despite the fact that other studies pointed towards precisely this. The direct influence from one parasite to the next is also rarer, with the exception of HIV, Staphilococcus aureus and the Hepatitis C virus, which are known to interact directly with other pathogens.

Personalized medicine in the spotlight

The network-like overview of the various interactions of parasites that can harm humans goes beyond the usual consideration of parasite pairs. “These results can serve as a basis for the development of new, personalized treatment schemes for infected patients,” Petchey hopes. The biologist is currently testing his hypotheses of this synthesis study with different organisms.

Literature:
Emily C. Griffiths, Amy B. Pedersen, Andy Fenton and Owen L. Petchey. Analysis of a summary net-work of co-infection in humans reveals that parasites interact most via shared resources. Proceedings of Royal Society B, March 12, 2014. Doi: 10.1098/rspb.2013.2286

Contact:
Prof. Owen Petchey
Institute of Evolutionary Biology and Environmental Studies

University of Zurich

Tel. +41 44 635 47 70
Email: owen.petchey@ieu.uzh.ch

Bettina Jakob
Media Relations
University of Zurich
Tel. +41 44 634 44 39
Email: bettina.jakob@kommunikation.uzh.ch

Bettina Jakob | Universität Zürich
Further information:
http://www.uzh.ch/

Further reports about: Analysis Biology Contact Environmental Evolutionary Fenton Hepatitis Simultaneous clear common fungi pathogens species

More articles from Life Sciences:

nachricht Let it snow
21.04.2015 | University of California - Santa Barbara

nachricht Decreasing biodiversity affects productivity of remaining plants
21.04.2015 | University of Alaska Fairbanks

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

Im Focus: Advances in Molecular Electronics: Lights On – Molecule On

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also...

Im Focus: Pruning of Blood Vessels: Cells Can Fuse With Themselves

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the...

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Decreasing biodiversity affects productivity of remaining plants

21.04.2015 | Life Sciences

OSU innovation boosts Wi-Fi bandwidth tenfold

21.04.2015 | Information Technology

Let it snow

21.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>