Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Papaya extract thwarts growth of cancer cells in lab tests

10.03.2010
The humble papaya is gaining credibility in Western medicine for anticancer powers that folk cultures have recognized for generations.

University of Florida researcher Nam Dang, M.D., Ph.D., and colleagues in Japan have documented papaya's dramatic anticancer effect against a broad range of lab-grown tumors, including cancers of the cervix, breast, liver, lung and pancreas. The researchers used an extract made from dried papaya leaves, and the anticancer effects were stronger when cells received larger doses of the tea.

In a paper published in the Feb. 17 issue of the Journal of Ethnopharmacology, Dang and his colleagues also documented for the first time that papaya leaf extract boosts the production of key signaling molecules called Th1-type cytokines. This regulation of the immune system, in addition to papaya's direct antitumor effect on various cancers, suggests possible therapeutic strategies that use the immune system to fight cancers.

The papaya extract did not have any toxic effects on normal cells, avoiding a common and devastating consequence of many cancer therapy regimens. The success of the papaya extract in acting on cancer without toxicity is consistent with reports from indigenous populations in Australia and his native Vietnam, said Dang, a professor of medicine and medical director of the UF Shands Cancer Center Clinical Trials Office.

"Based on what I have seen and heard in a clinical setting, nobody who takes this extract experiences demonstrable toxicity; it seems like you could take it for a long time — as long as it is effective," he said.

Researchers exposed 10 different types of cancer cell cultures to four strengths of papaya leaf extract and measured the effect after 24 hours. Papaya slowed the growth of tumors in all the cultures.

To identify the mechanism by which papaya checked the growth of the cultures, the team focused on a cell line for T lymphoma. Their results suggested that at least one of the mechanisms employed by the papaya extract is inducing cell death.

In a similar analysis, the team also looked at the effect of papaya extract on the production of antitumor molecules known as cytokines. Papaya was shown to promote the production of Th1-type cytokines, important in the regulation of the immune system. For that reason, the study findings raise the possibility of future use of papaya extract components in immune-related conditions such as inflammation, autoimmune disease and some cancers.

Bharat B. Aggarwal, Ph.D., a researcher at the University of Texas M.D. Anderson Cancer Center in Houston, already is so convinced of papaya's restorative powers that he has a serving of the fruit every day.

"We have always known that papaya has a lot of interesting things in there," said Aggarwal, a professor in the center's department of experimental therapeutics who was not involved in the UF research. Foremost among papaya's health-promoting agents is papain, papaya's signature enzyme, which is found in both the fruit and the leaves.

"This paper has not gone too much into identifying the components responsible for the activity, which is just fine. I think that is a good beginning," Aggarwal said.

Aggarwal also noted that papaya extract's success in reducing cancer in laboratory cell cultures must next be replicated in animal and human studies.

"I hope Dr. Dang takes it further, because I think we need enthusiastic people like him to move it forward," Aggarwal said.

Dang and a colleague have applied to patent the process to distill the papaya extract through the University of Tokyo; the next step in the research is to identify the specific compounds in the papaya extract active against the cancer cell lines. For this stage, Dang has partnered with Hendrik Luesch, Ph.D., a fellow UF Shands Cancer Center member and a professor of medicinal chemistry. Luesch is an expert in the identification and synthesis of natural products for medicinal purposes, and recently discovered a coral reef compound that inhibits cancer cell growth in cell lines.

Elizabeth Connor | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>