Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Panel of 11 genes predicts alcoholism risk, gives new insights into biology of the disease

22.05.2014

A group of 11 genes can successfully predict whether an individual is at increased risk of alcoholism, a research team from the United States and Germany reported Tuesday.

"This powerful panel of just 11 genes successfully identified who has problems with alcohol abuse and who does not in tests in three patient populations on two continents, in two ethnicities and in both genders," said Alexander B. Niculescu III, M.D., Ph.D., principal investigator and associate professor of psychiatry and medical neuroscience at the Indiana University School of Medicine.

The panel of genes is highly accurate in its differentiation of alcoholics from controls at a population level, and less so at an individual level, likely due to the major and variable role environment plays in the development of the disease in each individual, the authors noted. Nevertheless, such a test could identify people who are at higher or lower risk for the disease.

"As alcoholism is a disease that does not exist if the exogenous agent (alcohol) is not consumed, the use of genetic information to inform lifestyle choices could be quite powerful," the authors wrote in the paper, published online Tuesday in the journal Translational Psychiatry

... more about:
»Medicine »NIH »alcohol »alcoholics »genes

"We believe this is the strongest result to date in the field of alcoholism and offers a comprehensive -- though not exhaustive -- window to the genetics and biology of alcoholism," Dr. Niculescu said.

Dr. Niculescu, attending psychiatrist and research and development investigator at the Richard L. Roudebush Veterans Affairs Medical Center in Indianapolis, cautioned that genetic tests indicate risk, not certainty, and that "genes act in the context of environment."

Alcohol is legal, widely available, and subject to advertising and social pressures, he noted; but knowing one has a genetic predisposition to alcohol abuse could encourage behavioral and lifestyle changes.

The researchers incorporated data from a German genome-wide study of alcoholism with data from a variety of other types of research into genetic links to alcoholism using a system called Convergent Functional Genomics. The work produced a group of 135 candidate genes.

The researchers then looked at the overlap between those 135 genes and genes whose expression activity was changed in a mouse model of stress-reactive alcoholism -- research mice that respond to stress by consuming alcohol. The mouse model enables researchers to zero in on key genes that drive behavior without the myriad environmental effects that are present in humans.

The mouse model analysis narrowed the candidates down to the panel of 11 genes and 66 variations of those genes called single-nucleotide polymorphisms.

The researchers then determined that the panel of 11 genes could be used to differentiate between alcoholics and non-alcoholics (controls) in three different research populations for which genetic data and information about alcohol consumption were available: a group of Caucasian subjects and a group of African American subjects from the U.S., and a third group from Germany.

Many of the 11 genes also have been implicated as associated with other neuropsychiatric disorders including cocaine addiction, Parkinson's disease, bipolar disorder, schizophrenia and anxiety -- not too surprising given that basic brain biology is involved, and links between such diseases as alcoholism and bipolar disorder have been known clinically for many years, Dr. Niculescu said.

Some of the genes also suggest possible future routes for treatment and prevention, including genes that play a role in the activities of omega-3 fatty acids, for which there is some evidence of control of alcohol consumption in laboratory tests previously conducted by Dr. Niculescu and collaborators.

Other researchers involved in this work were Daniel Levey, Helen Le-Niculescu, Mikias Ayalew, Nikita Jain, Brigid Kirlin, Rebecca Learman, Evan Winiger, Zachary Rodd and Anantha Shekhar of the Indiana University School of Medicine; Nicholas Schork of The Scripps Research Institute; Josef Frank and Marcella Rietschel of the Central Institute of Mental Health, Mannheim, Germany; Falk Kiefer of Heidelberg University; Norbert Wodarz of the University of Regensburg; Bertram Müller-Myhsok of the Max Planck Institute of Psychiatry; Norbert Dahmen of the University of Mainz; Markus Nöthen of the University of Bonn; Richard Sherva and Lindsay Farrer of Boston University School of Medicine; Andrew Smith and Joel Gelernter of Yale University School of Medicine and Henry Kranzler of the University of Pennsylvania Perelman School of Medicine.

More information about this research can be found at www.neurophenomics.info.

The research was supported by an NIH Directors’ New Innovator Award (1DP2OD007363) and a VA Merit Award (1I01CX000139-01), as well as by NIH grants R01 DA12690, R01 DA12849, R01 AA11330 and R01 AA017535, and by grant FKZ 01GS08152 from the National Genome Research Network of the German Federal Ministry of Education and Research.

Eric Schoch | Eurek Alert!

Further reports about: Medicine NIH alcohol alcoholics genes

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>