Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Panel of 11 genes predicts alcoholism risk, gives new insights into biology of the disease

22.05.2014

A group of 11 genes can successfully predict whether an individual is at increased risk of alcoholism, a research team from the United States and Germany reported Tuesday.

"This powerful panel of just 11 genes successfully identified who has problems with alcohol abuse and who does not in tests in three patient populations on two continents, in two ethnicities and in both genders," said Alexander B. Niculescu III, M.D., Ph.D., principal investigator and associate professor of psychiatry and medical neuroscience at the Indiana University School of Medicine.

The panel of genes is highly accurate in its differentiation of alcoholics from controls at a population level, and less so at an individual level, likely due to the major and variable role environment plays in the development of the disease in each individual, the authors noted. Nevertheless, such a test could identify people who are at higher or lower risk for the disease.

"As alcoholism is a disease that does not exist if the exogenous agent (alcohol) is not consumed, the use of genetic information to inform lifestyle choices could be quite powerful," the authors wrote in the paper, published online Tuesday in the journal Translational Psychiatry

... more about:
»Medicine »NIH »alcohol »alcoholics »genes

"We believe this is the strongest result to date in the field of alcoholism and offers a comprehensive -- though not exhaustive -- window to the genetics and biology of alcoholism," Dr. Niculescu said.

Dr. Niculescu, attending psychiatrist and research and development investigator at the Richard L. Roudebush Veterans Affairs Medical Center in Indianapolis, cautioned that genetic tests indicate risk, not certainty, and that "genes act in the context of environment."

Alcohol is legal, widely available, and subject to advertising and social pressures, he noted; but knowing one has a genetic predisposition to alcohol abuse could encourage behavioral and lifestyle changes.

The researchers incorporated data from a German genome-wide study of alcoholism with data from a variety of other types of research into genetic links to alcoholism using a system called Convergent Functional Genomics. The work produced a group of 135 candidate genes.

The researchers then looked at the overlap between those 135 genes and genes whose expression activity was changed in a mouse model of stress-reactive alcoholism -- research mice that respond to stress by consuming alcohol. The mouse model enables researchers to zero in on key genes that drive behavior without the myriad environmental effects that are present in humans.

The mouse model analysis narrowed the candidates down to the panel of 11 genes and 66 variations of those genes called single-nucleotide polymorphisms.

The researchers then determined that the panel of 11 genes could be used to differentiate between alcoholics and non-alcoholics (controls) in three different research populations for which genetic data and information about alcohol consumption were available: a group of Caucasian subjects and a group of African American subjects from the U.S., and a third group from Germany.

Many of the 11 genes also have been implicated as associated with other neuropsychiatric disorders including cocaine addiction, Parkinson's disease, bipolar disorder, schizophrenia and anxiety -- not too surprising given that basic brain biology is involved, and links between such diseases as alcoholism and bipolar disorder have been known clinically for many years, Dr. Niculescu said.

Some of the genes also suggest possible future routes for treatment and prevention, including genes that play a role in the activities of omega-3 fatty acids, for which there is some evidence of control of alcohol consumption in laboratory tests previously conducted by Dr. Niculescu and collaborators.

Other researchers involved in this work were Daniel Levey, Helen Le-Niculescu, Mikias Ayalew, Nikita Jain, Brigid Kirlin, Rebecca Learman, Evan Winiger, Zachary Rodd and Anantha Shekhar of the Indiana University School of Medicine; Nicholas Schork of The Scripps Research Institute; Josef Frank and Marcella Rietschel of the Central Institute of Mental Health, Mannheim, Germany; Falk Kiefer of Heidelberg University; Norbert Wodarz of the University of Regensburg; Bertram Müller-Myhsok of the Max Planck Institute of Psychiatry; Norbert Dahmen of the University of Mainz; Markus Nöthen of the University of Bonn; Richard Sherva and Lindsay Farrer of Boston University School of Medicine; Andrew Smith and Joel Gelernter of Yale University School of Medicine and Henry Kranzler of the University of Pennsylvania Perelman School of Medicine.

More information about this research can be found at www.neurophenomics.info.

The research was supported by an NIH Directors’ New Innovator Award (1DP2OD007363) and a VA Merit Award (1I01CX000139-01), as well as by NIH grants R01 DA12690, R01 DA12849, R01 AA11330 and R01 AA017535, and by grant FKZ 01GS08152 from the National Genome Research Network of the German Federal Ministry of Education and Research.

Eric Schoch | Eurek Alert!

Further reports about: Medicine NIH alcohol alcoholics genes

More articles from Life Sciences:

nachricht IU-led study reveals new insights into light color sensing and transfer of genetic traits
06.05.2016 | Indiana University

nachricht Thievish hoverfly steals prey from carnivorous sundews
06.05.2016 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>