Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pair of proteins gets brain cells into shape

20.12.2012
Scientists at the German Center for Neurodegenerative Diseases (DZNE) in Bonn have gained new insights into the early phase of the brain’s development.

In cooperation with researchers of the Max Planck Institute of Neurobiology, the University of Bonn and other German and international colleagues they identified two proteins that control the formation of cell protuberances. The typical ramifications through which nerve cells receive and forward signals ultimately originate from these outgrowths.

The study conducted by Prof. Frank Bradke’s team provides indications on brain development and about the causes of diseases of the nervous system. The results have now been published in “Neuron”.

Under the microscope, the brain appears as a network of intricate beauty comprising billions of nerve cells (the so-called “neurons”) linked together. This network is engaged in a constant process of sharing information. The signals are transmitted from neuron to neuron through fine ramifications of the cell body. However, to acquire this typical structure, young nerve cells have first to go through a shape transformation. “Young neurons have a rather inconspicuous form. They tend to be round and are reminiscent of cherries,” comments Frank Bradke, group leader at the DZNE in Bonn. “At this stage, the neuron is much like an island. It is insulated and does not have any direct contact with other cells.”

Consequently, nerve cells have to go through a phase of change while they are still in the early stages of their development. To date, little was known about how the cells master this transformation, which is so important for their function. It is essential for the brain’s development that its neurons develop contacts to a multitude of other cells. The initial step of this process is that tiny extensions, the so-called “neurites” protrude out of the cell body. The study conducted by the researchers in Bonn and their colleagues sheds light on this process.

A dynamic duo gets its grip on the cell’s corset

Investigating mouse brain cells, the neuroscientists were able to identify the three key players involved in the shape change: the cell’s cytoskeleton, which consists of specific proteins that give the cell its form and stability, as well as the two proteins named “ADF” and “cofilin.” “We were able to show that these two proteins do have a significant impact on cell structure,” explains Dr. Kevin Flynn, a postdoc researcher in Bradke’s team and first author of the report published in “Neuron”. “Much like scissors they cut through the support corset of the cell in the proper location. Neurites can subsequently develop through these gaps.”

For this to occur several processes have to work hand in hand: along its perimeter, the neuron receives its stability mainly through a network of actin filaments, string shaped protein molecules. The proteins ADF and cofilin can alter this structure by dissolving the actin filaments and enabling fragments resulting from this process to be carried away. As a result, other components of the cytoskeleton – the microtubules – are able to come to action. The microtubule migrate through the newly opened gap and form a new cell protuberance.

Impact on the development of the brain

In their study, the researchers demonstrated the significance of the two proteins in nerve cell development. In certain mice, the production of ADF and cofilin was virtually halted. As a result the brains of newborn animals had severe abnormalities. Analysis of their brain cells indicated that they had failed to develop any neurites.

“Our study shows that the proteins ADF and cofilin, and their interaction with actin filaments, are key factors for brain development,” comments Bradke. However, the development of neurites is also of relevance in other contexts. For instance, nerve cells have to regrow their connections after an injury. In addition, a number of diseases and malformations of the nervous system are linked to underdeveloped neurites. “We now have a better understanding of the molecular processes that are involved in this important process.”

Original Publication:
“ADF/cofilin-mediated Actin Retrograde Flow Directs Neurite Formation in the Developing Brain,” Kevin C. Flynn, Farida Hellal, Dorothee Neukirchen, Sonja Jacobs, Sabina Tahirovic, Sebastian Dupraz, Sina Stern, Boyan K. Garvalov, Christine Gurniak, Alisa Shaw, Liane Meyn, Roland Wedlich-Söldner, James R. Bamburg, J. Victor Small, Walter Witke, Frank Bradke, Neuron, Online at: http://www.cell.com/neuron/abstract/S0896-6273%2812%2900897-5
A picture can be downloaded at
http://www.dzne.de/en/about-us/public-relations/meldungen/2012
/press-release-no-32.html
The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution of the Helmholtz Association of German Research Centres with sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten. The DZNE cooperates closely with universities, their clinics and other research facilities. Its cooperation partners in Bonn are the Caesar Research Center, the University of Bonn and the University Clinic Bonn.

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de/en

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>