Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pain reliever shows anti-viral activity against flu

22.03.2013
The over-the-counter anti-inflammatory drug naproxen may also exhibit antiviral activity against influenza A virus, according to a team of French scientists. The finding, the result of a structure-based investigation, is published online ahead of print in the journal Antimicrobial Agents and Chemotherapy.

New influenza vaccines must be developed annually, because the surface proteins they target mutate rapidly, the way cars used to get a whole new look every year. The researchers, led by Anny Slama-Schwok of the Institut National de la Recherche Agronomique, Jouy en Josas, France, found a much more stable, reliable target for anti-influenza activity. The so-called ribonucleoprotein complexes are necessary for replication, and the researchers realized they could target the nucleoprotein, preventing assembly of the complexes. Because of its vital function, the nucleoprotein is highly conserved, making it a good potential target for antiviral drugs.

The nucleoprotein's three dimensional structure, solved in 2006, provided the basis for searching for new drugs that could interfere with its action. The researchers did a virtual screening within the Sigma-Aldrich online catalog of biochemicals. That screening identified Naproxen, better known as the over-the-counter pain reliever Aleve, and as expected, it bound to the nucleoprotein, and impeded RNA binding, says Slama-Schwok. In further testing, it reduced the viral load in cells infected with H1N1 and H3N2 influenza A virus, and in mice it demonstrated a therapeutic index against influenza A that was superior to that of any other anti-inflammatory drug.

Specifically, naproxen blocks the RNA binding groove of the nucleoprotein, preventing formation of the ribonucleoprotein complex, thus taking the vital nucleoproteins out of circulation. The researchers write that naproxen is a lead compound for drug development that could be improved by tweaking the molecule to boost its ability to bind to nucleoprotein.

As an already approved drug, naproxen could become a treatment against influenza relatively quickly, the researchers write. Its status as a non-steroidal anti-inflammatory drug (NSAID), which inhibits the COX-2 pathway, as well as an antiviral would boost its efficacy.

A copy of the manuscript can be found online at http://bit.ly/asmtip0313a. Formal publication of the article is scheduled for the May 2013 issue of Antimicrobial Agents and Chemotherapy.

(N. Lejal, B. Tarus, E. Bouguyon, S. Chenavas, N. Bertho, B. Delmas, R.W.H. Ruigrok, C. Di Primo, A. Slama-Schwok, 2013. Structure-based discovery of the novel antibviral properties of Naproxen against the nucleoprotein of influenza A virus. Antim. Agents Chemother. Online ahead of print 4 March 2013 ,doi:10.1128/AAC.02335-12)

Antimicrobial Agents and Chemotherapy is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>