Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pain gene found in flies, mice and people may have links to creativity

12.11.2010
A newly discovered gene which helps to control the sense of pain is linked to synaesthesia, when sensations such as touch also affect other senses like hearing or sight.

The rare condition causes some people to see sounds or written words as colours, or experience tastes, smells and shapes in linked combinations. Famous synaesthetes include composers Franz Liszt or Olivier Messiaens, and this condition has been linked to creativity and intelligence.

Now Austrian medical researchers have identified a gene variation which reduces the sense of pain, giving hope for future treatments of pain sufferers, according to new research published in the journal Cell today (12 November 2010). Around one in five people around the world suffer from acute or chronic pain, with all its financial costs and emotional burden. Studies of twins have shown that at least half of the differences in the way we are sensitive to pain is inherited.

Scientists at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences in Vienna, led by Josef Penninger and Greg Neely, together with Clifford Woolf of Harvard Medical School, Boston, developed a system in fruit flies to model pain perception. The system allowed them to screen nearly the entire set of the fly’s genes in search for those that affect the insect’s response to noxious heat. After identifying 600 pain genes the researchers closed in on one known as á2ä3 which is involved in calcium ion channels. Doctors already know that these tiny pores in the cell membrane are targeted by some existing analgesics, helping to relieve pain, so it seemed a promising candidate gene for further studies.

The next stage was to test whether the á2ä3 gene also affects the way people feel heat and pain. Doctors in the USA looked at four different single-letter variations in DNA, within or close to the á2ä3 gene in 189 healthy volunteers. They found that some of the gene variations led to reduced sensitivity to acute pain in a test which gives the volunteer a quick series of heat pulses. Further testing in 169 patients who had undergone surgery for back pain caused by damaged discs showed that patients with these same gene variations were much less likely to have persisting chronic pain.

The research team then looked directly into the brain of mice with mutant á2ä3 genes with MRI scanners and, in cooperation with the group of Andreas Hess in Erlangen, Germany, showed that this gene controls the way heat pain signals are processed in the brain. In the mutant mice the nerve signals arrive in the brain correctly at the thalamus, a first pain processing centre, but are not properly sent on to the higher processing centres in the cortex, which should alert the animals to the sensation of pain. Instead the researchers found that areas in the brain cortex for sight, smell and hearing were being activated by the pain signal. Thus, the team stumbled upon the first ever known gene that appears to control sensory cross-activation or synaesthesia - a neurological condition where a stimulus of one sense triggers perception of another sense.

“To find that our mice showed sensory cross-activation was the most stunning result of our study, it was something we never looked for”, says Josef Penninger. “Multiple forms of synaesthesia exist including pain stimuli that trigger colour. Synaesthesia might affect up to 4% of the population, shows genetic linkage, and has been associated with intelligence and creativity. Thus, á2ä3 mutant mice might provide the first ever animal model to enable us to study the phenomenon of sensory cross-activation. This might open up an entirely new field of biology.”

“Genes give us an amazing and powerful tool to begin to understand how pain is generated, and which functional pathways and specific proteins are involved”, says Dr Woolf. “Understanding the molecular basis of pain will lead to the development of new analgesics, the identification of risk factors for chronic pain and improved decision-making about the suitability of surgical treatment for different patients”.

The paper „A genome-wide Drosophila screen for heat nociception identifies á2ä3 as an evolutionary conserved pain gene” (Neely et al.) will be published in Cell on November 12, 2010.

The IMBA – Institute for Molecular Biotechnology of the Austrian Academy of Sciences opened in 2003. It combines fundamental and applied research in the field of biomedicine. Interdisciplinary research groups address functional genetic questions, particularly those related to the origin of disease. The ultimate goal is to implement acquired knowledge into the development of innovative applications for prevention, diagnosis and treatment of disease.

Contact:
IMBA Institute of Molecular Biotechnology
Dr. Heidemarie Hurtl
Communications
Tel.: 0043(1)79730 3625
heidemarie.hurtl@imba.oeaw.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imba.oeaw.ac.at

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>