Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pain gene found in flies, mice and people may have links to creativity

12.11.2010
A newly discovered gene which helps to control the sense of pain is linked to synaesthesia, when sensations such as touch also affect other senses like hearing or sight.

The rare condition causes some people to see sounds or written words as colours, or experience tastes, smells and shapes in linked combinations. Famous synaesthetes include composers Franz Liszt or Olivier Messiaens, and this condition has been linked to creativity and intelligence.

Now Austrian medical researchers have identified a gene variation which reduces the sense of pain, giving hope for future treatments of pain sufferers, according to new research published in the journal Cell today (12 November 2010). Around one in five people around the world suffer from acute or chronic pain, with all its financial costs and emotional burden. Studies of twins have shown that at least half of the differences in the way we are sensitive to pain is inherited.

Scientists at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences in Vienna, led by Josef Penninger and Greg Neely, together with Clifford Woolf of Harvard Medical School, Boston, developed a system in fruit flies to model pain perception. The system allowed them to screen nearly the entire set of the fly’s genes in search for those that affect the insect’s response to noxious heat. After identifying 600 pain genes the researchers closed in on one known as á2ä3 which is involved in calcium ion channels. Doctors already know that these tiny pores in the cell membrane are targeted by some existing analgesics, helping to relieve pain, so it seemed a promising candidate gene for further studies.

The next stage was to test whether the á2ä3 gene also affects the way people feel heat and pain. Doctors in the USA looked at four different single-letter variations in DNA, within or close to the á2ä3 gene in 189 healthy volunteers. They found that some of the gene variations led to reduced sensitivity to acute pain in a test which gives the volunteer a quick series of heat pulses. Further testing in 169 patients who had undergone surgery for back pain caused by damaged discs showed that patients with these same gene variations were much less likely to have persisting chronic pain.

The research team then looked directly into the brain of mice with mutant á2ä3 genes with MRI scanners and, in cooperation with the group of Andreas Hess in Erlangen, Germany, showed that this gene controls the way heat pain signals are processed in the brain. In the mutant mice the nerve signals arrive in the brain correctly at the thalamus, a first pain processing centre, but are not properly sent on to the higher processing centres in the cortex, which should alert the animals to the sensation of pain. Instead the researchers found that areas in the brain cortex for sight, smell and hearing were being activated by the pain signal. Thus, the team stumbled upon the first ever known gene that appears to control sensory cross-activation or synaesthesia - a neurological condition where a stimulus of one sense triggers perception of another sense.

“To find that our mice showed sensory cross-activation was the most stunning result of our study, it was something we never looked for”, says Josef Penninger. “Multiple forms of synaesthesia exist including pain stimuli that trigger colour. Synaesthesia might affect up to 4% of the population, shows genetic linkage, and has been associated with intelligence and creativity. Thus, á2ä3 mutant mice might provide the first ever animal model to enable us to study the phenomenon of sensory cross-activation. This might open up an entirely new field of biology.”

“Genes give us an amazing and powerful tool to begin to understand how pain is generated, and which functional pathways and specific proteins are involved”, says Dr Woolf. “Understanding the molecular basis of pain will lead to the development of new analgesics, the identification of risk factors for chronic pain and improved decision-making about the suitability of surgical treatment for different patients”.

The paper „A genome-wide Drosophila screen for heat nociception identifies á2ä3 as an evolutionary conserved pain gene” (Neely et al.) will be published in Cell on November 12, 2010.

The IMBA – Institute for Molecular Biotechnology of the Austrian Academy of Sciences opened in 2003. It combines fundamental and applied research in the field of biomedicine. Interdisciplinary research groups address functional genetic questions, particularly those related to the origin of disease. The ultimate goal is to implement acquired knowledge into the development of innovative applications for prevention, diagnosis and treatment of disease.

Contact:
IMBA Institute of Molecular Biotechnology
Dr. Heidemarie Hurtl
Communications
Tel.: 0043(1)79730 3625
heidemarie.hurtl@imba.oeaw.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imba.oeaw.ac.at

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>