Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pain gene found in flies, mice and people may have links to creativity

12.11.2010
A newly discovered gene which helps to control the sense of pain is linked to synaesthesia, when sensations such as touch also affect other senses like hearing or sight.

The rare condition causes some people to see sounds or written words as colours, or experience tastes, smells and shapes in linked combinations. Famous synaesthetes include composers Franz Liszt or Olivier Messiaens, and this condition has been linked to creativity and intelligence.

Now Austrian medical researchers have identified a gene variation which reduces the sense of pain, giving hope for future treatments of pain sufferers, according to new research published in the journal Cell today (12 November 2010). Around one in five people around the world suffer from acute or chronic pain, with all its financial costs and emotional burden. Studies of twins have shown that at least half of the differences in the way we are sensitive to pain is inherited.

Scientists at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences in Vienna, led by Josef Penninger and Greg Neely, together with Clifford Woolf of Harvard Medical School, Boston, developed a system in fruit flies to model pain perception. The system allowed them to screen nearly the entire set of the fly’s genes in search for those that affect the insect’s response to noxious heat. After identifying 600 pain genes the researchers closed in on one known as á2ä3 which is involved in calcium ion channels. Doctors already know that these tiny pores in the cell membrane are targeted by some existing analgesics, helping to relieve pain, so it seemed a promising candidate gene for further studies.

The next stage was to test whether the á2ä3 gene also affects the way people feel heat and pain. Doctors in the USA looked at four different single-letter variations in DNA, within or close to the á2ä3 gene in 189 healthy volunteers. They found that some of the gene variations led to reduced sensitivity to acute pain in a test which gives the volunteer a quick series of heat pulses. Further testing in 169 patients who had undergone surgery for back pain caused by damaged discs showed that patients with these same gene variations were much less likely to have persisting chronic pain.

The research team then looked directly into the brain of mice with mutant á2ä3 genes with MRI scanners and, in cooperation with the group of Andreas Hess in Erlangen, Germany, showed that this gene controls the way heat pain signals are processed in the brain. In the mutant mice the nerve signals arrive in the brain correctly at the thalamus, a first pain processing centre, but are not properly sent on to the higher processing centres in the cortex, which should alert the animals to the sensation of pain. Instead the researchers found that areas in the brain cortex for sight, smell and hearing were being activated by the pain signal. Thus, the team stumbled upon the first ever known gene that appears to control sensory cross-activation or synaesthesia - a neurological condition where a stimulus of one sense triggers perception of another sense.

“To find that our mice showed sensory cross-activation was the most stunning result of our study, it was something we never looked for”, says Josef Penninger. “Multiple forms of synaesthesia exist including pain stimuli that trigger colour. Synaesthesia might affect up to 4% of the population, shows genetic linkage, and has been associated with intelligence and creativity. Thus, á2ä3 mutant mice might provide the first ever animal model to enable us to study the phenomenon of sensory cross-activation. This might open up an entirely new field of biology.”

“Genes give us an amazing and powerful tool to begin to understand how pain is generated, and which functional pathways and specific proteins are involved”, says Dr Woolf. “Understanding the molecular basis of pain will lead to the development of new analgesics, the identification of risk factors for chronic pain and improved decision-making about the suitability of surgical treatment for different patients”.

The paper „A genome-wide Drosophila screen for heat nociception identifies á2ä3 as an evolutionary conserved pain gene” (Neely et al.) will be published in Cell on November 12, 2010.

The IMBA – Institute for Molecular Biotechnology of the Austrian Academy of Sciences opened in 2003. It combines fundamental and applied research in the field of biomedicine. Interdisciplinary research groups address functional genetic questions, particularly those related to the origin of disease. The ultimate goal is to implement acquired knowledge into the development of innovative applications for prevention, diagnosis and treatment of disease.

Contact:
IMBA Institute of Molecular Biotechnology
Dr. Heidemarie Hurtl
Communications
Tel.: 0043(1)79730 3625
heidemarie.hurtl@imba.oeaw.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imba.oeaw.ac.at

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>