Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From oxygen transport to melanin formation: Activation mechanism of key enzymes explained

04.06.2009
Researchers from Mainz and Houston make use of cryo-electron microscopy to show the exact process of enzyme activation

Pandinus imperator, the emperor scorpion, is not only popular as a pet, but is also of interest for research purposes. The reason for this is its blue blood, which transports oxygen and distributes it throughout the body.

Like tyrosinase, the key enzyme in melanin synthesis, the blue blood pigment hemocyanin found in the emperor scorpion and other arthropods belongs to a group of special molecules that occur in all organisms and that have many different functions: coloring the skin, hair and eyes, immune response, wound healing or the brown discoloration of fruit.

"When these enzymes mutate, this may result in albinism, or in birth marks when production of the pigment melanin increases, as often seen in melanoma," explains Professor Heinz Decker of Johannes Gutenberg University Mainz. The biophysicist has been studying hemocyanins and the associated tyrosinases for the past 20 years. In cooperation with researchers, Dr. Cong and Dr. Chiu, from the Baylor College of Medicine in Houston he has now been able to show for the first time exactly how the enzymes become active, thereby fulfilling their various functions. This work was published in the journal Structure on 13 May.

The researchers investigated the hemocyanin molecules of the emperor scorpion with the aid of cryo-electron microscopy.

This is done by dissolving the molecules in an extremely thin film of water and then freezing it. The use of this technology means that the water does not form crystals, but an amorphous film of ice, which can then be examined by means of electron microscopy. "The benefit of this method lies in the fact that we can use it to penetrate the inside of the molecules and therefore see exactly what takes place there," says Decker. The molecules house the "active center", the part of the enzyme that carries out its function. Access to the active center is at first blocked. Once the researchers have triggered an appropriate stimulus the structure changes.

"We have seen that a specific domain of the molecules must move before the door to the active center is opened, thus triggering enzyme activity. This allows bulky phenols to reach the active center as a substrate and be converted into active quinones by bonding with oxygen; these quinones can then independently synthesize to melanin". For many years, Decker had been proposing this activation mechanism as a hypothesis in his work, but now it has been directly observed for the first time.

The observations made regarding the oxygen transport molecule hemocyanin can also be applied to tyrosinases. Hemocynanin is so closely related to tyrosinases that it can even be converted into tyrosinases by means of the activation mechanism described. This, too, has been demonstrated in several experiments. New opportunities have thus been created for an improved understanding of disorders or diseases such as albinism and malignant melanoma. The cosmetics industry is interested in this interrelationship, as the color of the skin and hair is determined by the formation of melanin. The food industry could make use of the information to prevent the discoloration of fruit, such as banana peels for example, by inhibiting this mechanism.

This study was funded by the National Center for Research Resources, the Roadmap Initiative for Medical Research (in Houston) and the German Research Foundation (DFG, SFB490) as well as the newly established Research Focus of Computational Sciences in Mainz (CMS) and Research Center for Immunology in Mainz.

Original publication:
Yao Cong, Qinfen Zhang, David Woolford, Thorsten Schweikardt, Htet Khant, Matthew Dougherty, Steven J. Ludtke, Wah Chiu and Heinz Decker
Structural Mechanism of SDS-Induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryomicroscopy

Structure, Volume 17, Issue 5, 749-758 (13 May 2009)

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.cell.com/structure/abstract/S0969-2126(09)00150-6

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>