Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From oxygen transport to melanin formation: Activation mechanism of key enzymes explained

04.06.2009
Researchers from Mainz and Houston make use of cryo-electron microscopy to show the exact process of enzyme activation

Pandinus imperator, the emperor scorpion, is not only popular as a pet, but is also of interest for research purposes. The reason for this is its blue blood, which transports oxygen and distributes it throughout the body.

Like tyrosinase, the key enzyme in melanin synthesis, the blue blood pigment hemocyanin found in the emperor scorpion and other arthropods belongs to a group of special molecules that occur in all organisms and that have many different functions: coloring the skin, hair and eyes, immune response, wound healing or the brown discoloration of fruit.

"When these enzymes mutate, this may result in albinism, or in birth marks when production of the pigment melanin increases, as often seen in melanoma," explains Professor Heinz Decker of Johannes Gutenberg University Mainz. The biophysicist has been studying hemocyanins and the associated tyrosinases for the past 20 years. In cooperation with researchers, Dr. Cong and Dr. Chiu, from the Baylor College of Medicine in Houston he has now been able to show for the first time exactly how the enzymes become active, thereby fulfilling their various functions. This work was published in the journal Structure on 13 May.

The researchers investigated the hemocyanin molecules of the emperor scorpion with the aid of cryo-electron microscopy.

This is done by dissolving the molecules in an extremely thin film of water and then freezing it. The use of this technology means that the water does not form crystals, but an amorphous film of ice, which can then be examined by means of electron microscopy. "The benefit of this method lies in the fact that we can use it to penetrate the inside of the molecules and therefore see exactly what takes place there," says Decker. The molecules house the "active center", the part of the enzyme that carries out its function. Access to the active center is at first blocked. Once the researchers have triggered an appropriate stimulus the structure changes.

"We have seen that a specific domain of the molecules must move before the door to the active center is opened, thus triggering enzyme activity. This allows bulky phenols to reach the active center as a substrate and be converted into active quinones by bonding with oxygen; these quinones can then independently synthesize to melanin". For many years, Decker had been proposing this activation mechanism as a hypothesis in his work, but now it has been directly observed for the first time.

The observations made regarding the oxygen transport molecule hemocyanin can also be applied to tyrosinases. Hemocynanin is so closely related to tyrosinases that it can even be converted into tyrosinases by means of the activation mechanism described. This, too, has been demonstrated in several experiments. New opportunities have thus been created for an improved understanding of disorders or diseases such as albinism and malignant melanoma. The cosmetics industry is interested in this interrelationship, as the color of the skin and hair is determined by the formation of melanin. The food industry could make use of the information to prevent the discoloration of fruit, such as banana peels for example, by inhibiting this mechanism.

This study was funded by the National Center for Research Resources, the Roadmap Initiative for Medical Research (in Houston) and the German Research Foundation (DFG, SFB490) as well as the newly established Research Focus of Computational Sciences in Mainz (CMS) and Research Center for Immunology in Mainz.

Original publication:
Yao Cong, Qinfen Zhang, David Woolford, Thorsten Schweikardt, Htet Khant, Matthew Dougherty, Steven J. Ludtke, Wah Chiu and Heinz Decker
Structural Mechanism of SDS-Induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryomicroscopy

Structure, Volume 17, Issue 5, 749-758 (13 May 2009)

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.cell.com/structure/abstract/S0969-2126(09)00150-6

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>