Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From oxygen transport to melanin formation: Activation mechanism of key enzymes explained

04.06.2009
Researchers from Mainz and Houston make use of cryo-electron microscopy to show the exact process of enzyme activation

Pandinus imperator, the emperor scorpion, is not only popular as a pet, but is also of interest for research purposes. The reason for this is its blue blood, which transports oxygen and distributes it throughout the body.

Like tyrosinase, the key enzyme in melanin synthesis, the blue blood pigment hemocyanin found in the emperor scorpion and other arthropods belongs to a group of special molecules that occur in all organisms and that have many different functions: coloring the skin, hair and eyes, immune response, wound healing or the brown discoloration of fruit.

"When these enzymes mutate, this may result in albinism, or in birth marks when production of the pigment melanin increases, as often seen in melanoma," explains Professor Heinz Decker of Johannes Gutenberg University Mainz. The biophysicist has been studying hemocyanins and the associated tyrosinases for the past 20 years. In cooperation with researchers, Dr. Cong and Dr. Chiu, from the Baylor College of Medicine in Houston he has now been able to show for the first time exactly how the enzymes become active, thereby fulfilling their various functions. This work was published in the journal Structure on 13 May.

The researchers investigated the hemocyanin molecules of the emperor scorpion with the aid of cryo-electron microscopy.

This is done by dissolving the molecules in an extremely thin film of water and then freezing it. The use of this technology means that the water does not form crystals, but an amorphous film of ice, which can then be examined by means of electron microscopy. "The benefit of this method lies in the fact that we can use it to penetrate the inside of the molecules and therefore see exactly what takes place there," says Decker. The molecules house the "active center", the part of the enzyme that carries out its function. Access to the active center is at first blocked. Once the researchers have triggered an appropriate stimulus the structure changes.

"We have seen that a specific domain of the molecules must move before the door to the active center is opened, thus triggering enzyme activity. This allows bulky phenols to reach the active center as a substrate and be converted into active quinones by bonding with oxygen; these quinones can then independently synthesize to melanin". For many years, Decker had been proposing this activation mechanism as a hypothesis in his work, but now it has been directly observed for the first time.

The observations made regarding the oxygen transport molecule hemocyanin can also be applied to tyrosinases. Hemocynanin is so closely related to tyrosinases that it can even be converted into tyrosinases by means of the activation mechanism described. This, too, has been demonstrated in several experiments. New opportunities have thus been created for an improved understanding of disorders or diseases such as albinism and malignant melanoma. The cosmetics industry is interested in this interrelationship, as the color of the skin and hair is determined by the formation of melanin. The food industry could make use of the information to prevent the discoloration of fruit, such as banana peels for example, by inhibiting this mechanism.

This study was funded by the National Center for Research Resources, the Roadmap Initiative for Medical Research (in Houston) and the German Research Foundation (DFG, SFB490) as well as the newly established Research Focus of Computational Sciences in Mainz (CMS) and Research Center for Immunology in Mainz.

Original publication:
Yao Cong, Qinfen Zhang, David Woolford, Thorsten Schweikardt, Htet Khant, Matthew Dougherty, Steven J. Ludtke, Wah Chiu and Heinz Decker
Structural Mechanism of SDS-Induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryomicroscopy

Structure, Volume 17, Issue 5, 749-758 (13 May 2009)

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.cell.com/structure/abstract/S0969-2126(09)00150-6

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>