Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From oxygen transport to melanin formation: Activation mechanism of key enzymes explained

04.06.2009
Researchers from Mainz and Houston make use of cryo-electron microscopy to show the exact process of enzyme activation

Pandinus imperator, the emperor scorpion, is not only popular as a pet, but is also of interest for research purposes. The reason for this is its blue blood, which transports oxygen and distributes it throughout the body.

Like tyrosinase, the key enzyme in melanin synthesis, the blue blood pigment hemocyanin found in the emperor scorpion and other arthropods belongs to a group of special molecules that occur in all organisms and that have many different functions: coloring the skin, hair and eyes, immune response, wound healing or the brown discoloration of fruit.

"When these enzymes mutate, this may result in albinism, or in birth marks when production of the pigment melanin increases, as often seen in melanoma," explains Professor Heinz Decker of Johannes Gutenberg University Mainz. The biophysicist has been studying hemocyanins and the associated tyrosinases for the past 20 years. In cooperation with researchers, Dr. Cong and Dr. Chiu, from the Baylor College of Medicine in Houston he has now been able to show for the first time exactly how the enzymes become active, thereby fulfilling their various functions. This work was published in the journal Structure on 13 May.

The researchers investigated the hemocyanin molecules of the emperor scorpion with the aid of cryo-electron microscopy.

This is done by dissolving the molecules in an extremely thin film of water and then freezing it. The use of this technology means that the water does not form crystals, but an amorphous film of ice, which can then be examined by means of electron microscopy. "The benefit of this method lies in the fact that we can use it to penetrate the inside of the molecules and therefore see exactly what takes place there," says Decker. The molecules house the "active center", the part of the enzyme that carries out its function. Access to the active center is at first blocked. Once the researchers have triggered an appropriate stimulus the structure changes.

"We have seen that a specific domain of the molecules must move before the door to the active center is opened, thus triggering enzyme activity. This allows bulky phenols to reach the active center as a substrate and be converted into active quinones by bonding with oxygen; these quinones can then independently synthesize to melanin". For many years, Decker had been proposing this activation mechanism as a hypothesis in his work, but now it has been directly observed for the first time.

The observations made regarding the oxygen transport molecule hemocyanin can also be applied to tyrosinases. Hemocynanin is so closely related to tyrosinases that it can even be converted into tyrosinases by means of the activation mechanism described. This, too, has been demonstrated in several experiments. New opportunities have thus been created for an improved understanding of disorders or diseases such as albinism and malignant melanoma. The cosmetics industry is interested in this interrelationship, as the color of the skin and hair is determined by the formation of melanin. The food industry could make use of the information to prevent the discoloration of fruit, such as banana peels for example, by inhibiting this mechanism.

This study was funded by the National Center for Research Resources, the Roadmap Initiative for Medical Research (in Houston) and the German Research Foundation (DFG, SFB490) as well as the newly established Research Focus of Computational Sciences in Mainz (CMS) and Research Center for Immunology in Mainz.

Original publication:
Yao Cong, Qinfen Zhang, David Woolford, Thorsten Schweikardt, Htet Khant, Matthew Dougherty, Steven J. Ludtke, Wah Chiu and Heinz Decker
Structural Mechanism of SDS-Induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryomicroscopy

Structure, Volume 17, Issue 5, 749-758 (13 May 2009)

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.cell.com/structure/abstract/S0969-2126(09)00150-6

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>