Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxidative Stress: Mechanism of Cell Death Clarified

03.09.2008
Dr. Marcus Conrad of the Institute of Clinical Molecular Biology and Tumor Genetics at the Helmholtz Zentrum München has decrypted the molecular mechanism through which the death of cells is caused by oxidative stress.

This knowledge opens novel perspectives to systematically explore the benefit of targeted therapeutic interventions in the cure of ageing and stress-related degenerative diseases.

Life processes in cells require a reducing environment that needs to be sustained with the help of a large number of antioxidative enzymes. This may sound abstract and incomprehensible, but everyone knows the phenomenon that a piece of cut apple or a piece of cut meat changes colour quickly and deteriorates, because the oxygen in the air produces chemical reactions in the tissues (oxidation of biomolecules).

If the equilibrium in the organism moves towards oxidative processes, then this is known as oxidative stress. Oxidative stress, for instance, is associated with the aging of body cells. Furthermore, a strong accumulation of reactive oxygen species (ROS) along with drops in cellular concentrations of glutathione, (GSH), the major antioxidant produced by the body, is well known as a common cause of acute and chronic degenerative diseases, such as, arteriosclerosis, diabetes, stroke, Alzheimer's and Parkinson's diseases.

"To investigate the molecular function of the cellular reducing agent GSH in the metabolic pathway of cell death triggered by oxidative stress, mice and cells were generated that specifically lack glutathione peroxidase 4 (GPx4), which is emerging as one of the most important GSH dependent enzymes", explains Marcus Conrad. The induced inactivation of GPx4 caused massive oxidation of lipids and eventually cell death. A similar phenotype could be observed when intracellular GSH was removed from wild-type cells by a chemical inhibitor of GSH biosynthesis.

Interestingly enough, this cell death could be completely prevented by Vitamin E, but not by water-soluble antioxidants. Since the oxidation of fatty acids in this cell death pathway, was of paramount importance, multiple studies were performed to describe, in greater detail, the source and nature of lipid peroxides.

Pharmacological and reverse genetic analyses showed that lipid peroxides in GPx4-depleted cells do not appear by coincidence, but accumulate due to increased activity of a specific enzyme of the arachidonic acid metabolism, the 12/15-lipoxygenase. Activation of apoptosis inducing factor (AIF), evidenced by its relocation from mitochondria to the cell nucleus, was identified as another important event in this signaling cascade.

The fact that oxidative stress is a major inducer of cell death is a well accepted current model. Until now however, the source and nature of the reactive oxygen species has remained obscure, as have questions concerning the way they act. Marcus Conrad: "So far, it was assumed that oxidative stress is detrimental to cells by unspecific oxidation of many essential biomolecules, such as proteins and lipids. That is why we were amazed to find that in cells lacking either glutathione or glutathione peroxidase 4, a distinctive signaling pathway is engaged, which causes cell death. The data represent the first molecular analyses of a redox-regulated signaling pathway, describing how oxidative stress is recognized in the body and translated into cell death".

Since this cell death cascade can be interrupted at any single stage with the help of drugs, this pathway harbors promising targets for therapeutic intervention to mitigate the deleterious effects of oxidative stress in complex degenerative human diseases.

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>