Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL study uses neutron scattering, supercomputing to demystify forces at play in biofuel production

14.11.2013
Researchers studying more effective ways to convert woody plant matter into biofuels at the Department of Energy's Oak Ridge National Laboratory have identified fundamental forces that change plant structures during pretreatment processes used in the production of bioenergy.

The research team, which published its results in Green Chemistry, set out to decipher the inner workings of plant cell walls during pretreatment, the most expensive stage of biofuel production.


This graphical representation of lignocellulosic biomass based on supercomputer models illustrates a new Oak Ridge National Laboratory study about the inner workings of plant cell walls during bioenergy production. (Image credit: Thomas Splettstoesser; http://www.scistyle.com)

Pretreatment subjects plant material to extremely high temperature and pressure to break apart the protective gel of lignin and hemicellulose that surrounds sugary cellulose fibers.

“While pretreatments are used to make biomass more convertible, no pretreatment is perfect or complete,” said ORNL coauthor Brian Davison. “Whereas the pretreatment can improve biomass digestion, it can also make a portion of the biomass more difficult to convert. Our research provides insight into the mechanisms behind this ‘two steps forward, one step back’ process.”

The team’s integration of experimental techniques including neutron scattering and X-ray analysis with supercomputer simulations revealed unexpected findings about what happens to water molecules trapped between cellulose fibers.

“As the biomass heats up, the bundle of fibers actually dehydrates -- the water that’s in between the fibers gets pushed out,” said ORNL’s Paul Langan. “This is very counterintuitive because you are boiling something in water but simultaneously dehydrating it. It’s a really simple result, but it’s something no one expected.”

This process of dehydration causes the cellulose fibers to move closer together and become more crystalline, which makes them harder to break down.

In a second part of the study, the researchers analyzed the two polymers called lignin and hemicellulose that bond to form a tangled mesh around the cellulose bundles. According to the team’s experimental observations and simulations, the two polymers separate into different phases when heated during pretreatment.

“Lignin is hydrophobic so it repels water, and hemicellulose is hydrophilic, meaning it likes water,” Langan said. “Whenever you have a mixture of two polymers in water, one of which is hydrophilic and one hydrophobic, and you heat it up, they separate out into different phases.”

Understanding the role of these underlying physical factors -- dehydration and phase separation -- could enable scientists to engineer improved plants and pretreatment processes and ultimately bring down the costs of biofuel production.

“Our insight is that we have to find a balance which avoids cellulose dehydration but allows phase separation,” Langan said. “We know now what we have to achieve -- we don’t yet know how that could be done, but we’ve provided clear and specific information to help us get there.”

The research is published as “Common processes drive the thermochemical pretreatment of lignocellulosic biomass,” and is available online here: http://pubs.rsc.org/en/content/articlelanding/2013/gc/c3gc41962b#!divAbstract.

The study’s coauthors are Paul Langan, Loukas Petridis, Hugh O’Neill, Sai Venkatesh Pingali, Marcus Foston, Yoshiharu Nishiyama, Roland Schulz, Benjamin Lindner, B. Leif Hanson, Shane Harton, William Heller, Volker Urban, Barbara Evans, S. Gnanakaran, Jeremy Smith, Brian Davison and Arthur Ragauskas.

The research was funded by DOE’s Office of Science. The study used the resources of ORNL’s High Flux Isotope Reactor (http://neutrons.ornl.gov/facilities/HFIR/) and Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center (http://www.nersc.gov), both of which are user facilities also supported by DOE’s Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>