Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic solar cells with high electric potential for portable electronics

12.10.2012
A new breakthrough in solar technology means portable electronic devices such as e-book readers could soon be re-charged on the move in low light levels and partial shading.

Scientists from the University of Warwick, in collaboration with spin-out company Molecular Solar, have created an organic solar cell that generates a sufficiently high voltage to recharge a lithium-ion battery directly, without the need to connect multiple individual cells in series. Modules of these high voltage cells perform well in different light conditions including partial shade making them well matched to consumer electronic devices such as e-book readers, cameras and some mobile phones.

Organic photovoltaic (OPV) cells, the so-called ‘third generation’ of solar technology, offer exciting opportunities thanks to the potential for very cheap manufacture, lightweight, low profile photovoltaics compatible with flexible substrates, which means they are ideally matched to portable electronic device applications.

This new OPV technology is a significant breakthrough as scientists have addressed the problem of low out-put voltage when the module is in low light levels or partial shading taking an important step towards rolling out cheap OPV cells in low-power portable electronics.

The scientists, from the University’s Department of Chemistry, have demonstrated a cell with an open circuit voltage of over 7V which delivers maximum power at more than the 4.2V needed to power a standard lithium ion battery.

This is the first time these features have been demonstrated using ultra high voltage OPV cells.

Professor Tim Jones, one of the lead researchers at University of Warwick, along with Dr Ross Hatton and Professor Mike Shipman, said: “We have taken a big step towards cheap-to-make solar chargers which can top up your devices whenever they are being used – both indoors and out.

“A small light-weight solar charger no bigger than a credit card can be fitted to the battery of an e-book reader for example, and constantly top it up with power while you are reading it - even if you are sitting inside on the sofa.

“Alternatively, this kind of solar cell could be ideal for outdoor use as it is light-weight and portable.

“The next step is to extend this technology outside the laboratory to make cheap OPV chargers available on a commercial scale through Molecular Solar.”

The research is detailed in the paper Ultra-high voltage multijunction organic solar cells for low-power electronic applications and was published in the journal Advanced Energy Materials.

Crucial pieces of equipment used in this research were funded through the Science City Research Alliance (SCRA) Energy Efficiency project. Molecular Solar is soon to launch a new round of fund-raising to support the commercialisation of this technology.

The University received funding from the Engineering and Physical Science Research Council (EPSRC) and the Technology Strategy Board (TSB) to go towards this research.

Note for editors: SCRA is a strategic research partnership between the University of Warwick and the University of Birmingham with a specific remit to work with businesses across the region. It has benefited from a multi-million pound investment in equipment and research infrastructure across both institutions via Birmingham Science City and the European Regional Development Fund.

For further information please contact:

Dr Ross Hatton, Assistant Professor of Chemistry
and Royal Academy of Engineering/EPSRC Research Fellow
University of Warwick
Ross.Hatton@warwick.ac.uk Tel: +44 (0)2476 150874
Peter Dunn, email: p.j.dunn@warwick.ac.uk
Head of Communications, Communications Office, University House, University of Warwick,

Tel: +44(0)24 76 523708 Mobile +44(0)7767 655860

Dr. Ross Hatton | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>