Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic solar cells with high electric potential for portable electronics

12.10.2012
A new breakthrough in solar technology means portable electronic devices such as e-book readers could soon be re-charged on the move in low light levels and partial shading.

Scientists from the University of Warwick, in collaboration with spin-out company Molecular Solar, have created an organic solar cell that generates a sufficiently high voltage to recharge a lithium-ion battery directly, without the need to connect multiple individual cells in series. Modules of these high voltage cells perform well in different light conditions including partial shade making them well matched to consumer electronic devices such as e-book readers, cameras and some mobile phones.

Organic photovoltaic (OPV) cells, the so-called ‘third generation’ of solar technology, offer exciting opportunities thanks to the potential for very cheap manufacture, lightweight, low profile photovoltaics compatible with flexible substrates, which means they are ideally matched to portable electronic device applications.

This new OPV technology is a significant breakthrough as scientists have addressed the problem of low out-put voltage when the module is in low light levels or partial shading taking an important step towards rolling out cheap OPV cells in low-power portable electronics.

The scientists, from the University’s Department of Chemistry, have demonstrated a cell with an open circuit voltage of over 7V which delivers maximum power at more than the 4.2V needed to power a standard lithium ion battery.

This is the first time these features have been demonstrated using ultra high voltage OPV cells.

Professor Tim Jones, one of the lead researchers at University of Warwick, along with Dr Ross Hatton and Professor Mike Shipman, said: “We have taken a big step towards cheap-to-make solar chargers which can top up your devices whenever they are being used – both indoors and out.

“A small light-weight solar charger no bigger than a credit card can be fitted to the battery of an e-book reader for example, and constantly top it up with power while you are reading it - even if you are sitting inside on the sofa.

“Alternatively, this kind of solar cell could be ideal for outdoor use as it is light-weight and portable.

“The next step is to extend this technology outside the laboratory to make cheap OPV chargers available on a commercial scale through Molecular Solar.”

The research is detailed in the paper Ultra-high voltage multijunction organic solar cells for low-power electronic applications and was published in the journal Advanced Energy Materials.

Crucial pieces of equipment used in this research were funded through the Science City Research Alliance (SCRA) Energy Efficiency project. Molecular Solar is soon to launch a new round of fund-raising to support the commercialisation of this technology.

The University received funding from the Engineering and Physical Science Research Council (EPSRC) and the Technology Strategy Board (TSB) to go towards this research.

Note for editors: SCRA is a strategic research partnership between the University of Warwick and the University of Birmingham with a specific remit to work with businesses across the region. It has benefited from a multi-million pound investment in equipment and research infrastructure across both institutions via Birmingham Science City and the European Regional Development Fund.

For further information please contact:

Dr Ross Hatton, Assistant Professor of Chemistry
and Royal Academy of Engineering/EPSRC Research Fellow
University of Warwick
Ross.Hatton@warwick.ac.uk Tel: +44 (0)2476 150874
Peter Dunn, email: p.j.dunn@warwick.ac.uk
Head of Communications, Communications Office, University House, University of Warwick,

Tel: +44(0)24 76 523708 Mobile +44(0)7767 655860

Dr. Ross Hatton | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>